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(ii) f(x, y) + f(y, x) ≤ 0 for any x, y ∈ K;
(iii) for every x ∈ K, f(x, ·) : K → R is lower semicontinuous and convex;
(iv) for every y ∈ K, f(·, y) : K → R is upper hemicontinuous.

Theorem 1.1 (Combettes and Hirstoaga [2]). subset of H. Suppose that f :
K ×K → R satisfies Condition 1 and let

Sf = {x ∈ K : f(x, y) ≥ 0 (∀y ∈ K)}.
Then:

(i) D(Jf ) = H;
(ii) Jf is single-valued and firmly nonexpansive;
(iii) F (Jf ) = Sf ;
(iv) Sf is closed and convex.

The result (i) was proved by Blum and Oettli [1]. To prove it, we need to use
the Schauder fixed point theorem. However, we cannot apply a similar tech-
nique to a Hadamard space; the structure of convex combinations is different
from that of a Hilbert space. Hence we need to assume a condition called the
convex hull finite property to a Hadamard space.

In 2012, Kimura and Satô proved the CQ projection method in CAT(1)
spaces. Since a Hadamard space is also CAT(1) space, it means that the CQ
projection method in CAT(1) spaces can be applied to the case of Hadamard
spaces. In this paper, we attempt to apply the CQ projection method in
Hadamard spaces to equilibrium problems by using resolvent of the bifunction
and obtain a convergence theorem to a solution to this problem.

2. Preliminaries

Let X be a metric space. For x, y ∈ X, a mapping c : [0, l] → X is called
a geodesic if c satisfies c(0) = x, c(l) = y, and d(c(u), c(v)) = |u − v| for every
u, v ∈ [0, l]. If for any points x, y ∈ X, there exists a geodesic with endpoints
x and y, then X is called a geodesic metric space. In what follows, we assume
that a geodesic always exists uniquely for each pair of endpoints. Such a space
is said to be uniquely geodesic.

For a uniquely geodesic space X, the image of geodesic with endpoints
x, y ∈ X is denoted by [x, y]. For x, y, z ∈ X, a geodesic triangle △(x, y, z) is
defined by △(x, y, z) = [y, z] ∪ [z, x] ∪ [x, y]. For a triangle △(x, y, z) ⊂ X, let
△(x, y, z) ⊂ E2 be such that each corresponding edge has the same length as
that of the original triangle. It is called a comparison triangle of △(x, y, z). A
point p ∈ [x, y] is called a comparison point of p ∈ [x, y] if d(x, z) = d(x, z).

X is called a CAT(0) space if for every p, q ∈ △(x, y, z) ⊂ X and their
corresponding points p, q ∈ △(x, y, z) satisfy that d(p, q) ≤ dE2(p, q), where dE2
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is the Euclidean metric. A Hadamard space is defined as a complete CAT(0)
space.

Let X be a geodesic metric space and {xn} a bounded sequence of X. For
x ∈ X, we put r(x, {xn}) = lim supn→∞ d(x, xn). The asymptotic radius of
{xn} is defined by r({xn}) = infx∈X r(x, {xn}). Further, the asymptotic center
of {xn} is defined by

AC({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

If AC({xnk
}) = {x0} for any subsequences {xnk

} of {xn}, that is, their asymp-
totic center consists of the unique element x0, then we say {xn} is ∆-convergent

to x0 and we denote it by xn
∆
⇀ x0.

Lemma 2.1 (Kimura [3]). Let X be a Hadamard space and {xn} a sequence
in X. Suppose that {xn} is ∆-convergent to x ∈ X and {d(xn, p)} converges
to d(x, p) for some p ∈ X. Then {xn} converges to x.

Let X be a Hadamard space and let T be a mapping from X to X. The
set of all fixed points of T is denoted by F (T ). We say T is nonexpansive if
d(Tx, Ty) ≤ d(x, y) for every x, y ∈ X. T is said to be quasinonexpansive if
F (T ) ̸= ∅ and d(Tx, z) ≤ d(x, z) for every x ∈ X and z ∈ F (T ).

A mapping T : X → X is said to be ∆-demiclosed if x0 ∈ F (T ) whenever
{xn} is ∆-convergent to x0 and limn→∞ d(xn, Txn) = 0. T is said to be firmly
metrically nonspreading if

2d(Tx, Ty)2 ≤ d(x, Ty)2 + d(Tx, y)2 − d(x, Tx)2 − d(y, Ty)2

for any x, y ∈ X, see [6]. Moreover, a firmly metrically nonspreading mapping is
nonexpansive and ∆-demiclosed. If F (T ) is nonempty, then a firmly metrically
nonspreading mapping is quasinonexpansive.

Let X be a Hadamard space and E a nonempty finite family of points of X.
Then a convex hull of E is defined by

coE =

∞⋃
n=0

Xn,

where X0 = E,Xn = {tun−1 ⊕ (1 − t)vn−1 : un−1, vn−1 ∈ Xn−1, t ∈ [0, 1]} for
n ∈ N.

We say that a Hadamard space X has the Convex Hull Finite Property
(CHFP) if every continuous mapping f : coE → coE has a fixed point for
every finite subset E of X.

Following Kimura and Kishi [4], we assume the following conditions for f
when we consider an equilibrium problem.
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Condition 2 (Kimura–Kishi [4]). Let X be a Hadamard space and K a
nonempty closed convex subset ofX. We suppose that a bifunction f : K×K →
R satisfies the following conditions:

(i) f(x, x) = 0 for any x ∈ K;
(ii) f(x, y) + f(y, x) ≤ 0 for any x, y ∈ K;
(iii) for every x ∈ K, f(x, ·) : K → R is lower semicontinuous and convex;
(iv) for every y ∈ K, f(·, y) : K → R is upper hemicontinuous.

Following the definition of the resolvent on a Hilbert space, they define a
resolvent on this space. Let X be a Hadamard space and K a nonempty closed
convex subset of X. The resolvent of bifunction f : K2 → R is a set-valued
operator Jf : X → 2K defined by

Jf (x) =

{
z ∈ K : f(z, y) +

1

2
(d(x, y)2 − d(x, z)2 − d(y, z)2) ≥ 0 (∀y ∈ K)

}
for x ∈ K.

Theorem 2.2 (Kimura–Kishi [4]). Let X be a Hadamard space with CHFP and
let K be a nonempty closed convex subset of X. Suppose that F : K ×K → R
satisfies Condition 2 and let

Jf (x) =

{
z ∈ K : f(z, y) +

1

2
(d(x, y)2 − d(x, z)2 − d(y, z)2) ≥ 0 (∀y ∈ K)

}
.

Then,

(i) D(Jf ) = X;
(ii) Jf is single-valued, firmly metrically nonspreading, and ∆-demiclosed;
(iii) F (Jf ) = Sf = {x ∈ K : f(x, y) ≥ 0 (∀y ∈ K)};
(iv) Sf is closed and convex.

3. The main result

We obtain the following convergence theorem of an iterative scheme to a
solution to an equilibrium problem. The underlying space is a Hadamard space
and the approximate sequence is generated by the CQ method.

Theorem 3.1. Let X be a Hadamard space with CHFP and K a closed convex
subset of X. Suppose that {z ∈ K : d(u, z) ≤ d(v, z)} and {z ∈ K : d(u, z)2 ≤
d(v, z)2 − d(u, v)2} are convex for every u, v ∈ X. Suppose that the set S =
{x ∈ K : f(x, y) ≥ 0 (∀y ∈ K)} is nonempty. Let {λn} ⊂ R such that
0 < infn∈N λn ≤ supn∈N λn < ∞, and

Jλnf (x)=

{
z ∈ K : λnf(z, y)+

1

2
(d(x, y)2 − d(x, z)2 − d(y, z)2) ≥ 0 (∀y ∈ K)

}
.
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For a given initial point x1 ∈ K, generate a sequence {xn} as follows:

Cn+1 = {z ∈ K : d(Jλnf (xn), z) ≤ d(xn, z)},
Qn+1 = {z ∈ K : d(xn, z)

2 ≤ d(x1, z)
2 − d(x1, xn)

2},
xn+1 = PCn+1∩Qn+1

x1

for each n ∈ N. Then {xn} is well-defined and converges to PSx1 ∈ K, where
PC : K → C is the metric projection of C onto a nonempty closed convex
subset C of K.

Proof. We first show that {xn} is well-defined and S ⊂
⋂

n∈N Cn+1 ∩Qn+1 by
induction. An initial point x1 ∈ K is given. We have

C2 = {z ∈ K : (Jλ1f (x1), z) ≤ d(x1, z)},
Q2 = {z ∈ K : d(x1, z)

2 ≤ d(x1, z)
2 − d(x1, x1)

2}
= {z ∈ K : d(x1, z)

2 ≤ d(x1, z)
2}

= K.

We prove S ⊂ C2 ∩ Q2. Let z ∈ S = F (Jλ1f ). Since Jλ1f is firmly metrically
nonspreading, it is quasinonexpansive. It follows that

d(Jλ1f (x1), z) ≤ d(x1, z)

and thus z ∈ C2. We also have z ∈ K = Q2. Therefore, z ∈ C2 ∩ Q2. Hence,
we get S ⊂ C2 ∩Q2.

Suppose that x1, x2, . . . , xk are defined and both Ck+1 and Qk+1 are closed
convex subsets of K such that S ⊂ Ck+1 ∩ Qk+1 for fixed k ∈ N. Then since
Ck+1 ∩Qk+1 is a nonempty closed subset of K by the assumption of the space,
we can define xk+1 = PCk+1∩Qk+1

x1. Further, both Ck+2 and Qk+2 are closed
and convex. Let z ∈ S. Since Jλk+1f is firmly metrically nonspreading, we get

d(Jλk+1f (xk+1), z) ≤ d(xk, z),

and thus z ∈ Ck+2. This implies that S ⊂ Ck+2.
To prove S ⊂ Qk+2, it is sufficient to show that Ck+1 ∩Qk+1 ⊂ Qk+2. For

any z ∈ Ck+1 ∩Qk+1 and t ∈ ]0, 1[,

tz ⊕ (1− t)xk+1 = tz ⊕ (1− t)PCk+1∩Qk+1
x1 ∈ Ck+1 ∩Qk+1.

It follows that

d(x1, xk+1)
2 ≤ d(x1, tz ⊕ (1− t)xk+1)

2

≤ td(x1, z)
2 + (1− t)d(x1, xk+1)

2 − t(1− t)d(z, xk+1)
2,
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and thus

t(1− t)d(xk+1, z)
2 ≤ td(x1, z)

2 + (1− t)d(x1, xk+1)
2 − d(x1, xk+1)

2

= td(x1, z)
2 − td(x1, xk+1)

2.

Dividing by t and letting t → 0, we have

d(xk+1, z)
2 ≤ d(x1, z)

2 − d(x1, xk+1)
2.

Thus z ∈ Qk+2. Therefore, we have Ck+1 ∩ Qk+1 ⊂ Qk+2. Hence, Ck+2 ∩
Qk+2 includes S. It follows by induction that {xn} is well-defined and S ⊂⋂

n∈N Cn+1 ∩Qn+1.
Next, we show limn→∞ d(Jλnf (xn), xn) = 0. For every n ∈ N, we have

d(x1, xn) = d(x1, PCn∩Qn
x1) ≤ d(x1, PSx1) < ∞.

It follows that supn∈N d(x1, xn) < ∞ and {xn} is bounded. Moreover, from the
definition of Qn+1, we get

d(x1, xn) = d(x1, PQn+1
x1) ≤ d(x1, PCn+1∩Qn+1

x1) = d(x1, xn+1).

for n ∈ N. Thus {d(x1, xn)} is an increasing real sequence so that it has a limit
a = limn→∞ d(x1, xn) < ∞. Since xn+1 ∈ Qn+1, we have

d(xn, xn+1)
2 ≤ d(x1, xn+1)

2 − d(x1, xn)
2.

for n ∈ N. Tending n → ∞, we have

0 ≤ lim inf
n→∞

d(xn, xn+1)
2 ≤ lim sup

n→∞
d(xn, xn+1)

2 ≤ a− a = 0.

Hence, limn→∞ d(xn, xn+1) = 0. Since xn+1 ∈ Cn+1, it holds that

d(Jλnf (xn), xn+1) ≤ d(xn, xn+1).

These facts imply that

lim
n→∞

d(Jλnf (xn), xn) ≤ lim
n→∞

(Jλnf (xn), xn+1) + d(xn+1, xn))

≤ lim
n→∞

(d(xn, xn+1) + d(xn+1, xn))

= 2 lim
n→∞

d(xn, xn+1)

= 0.

Hence limn→∞ d(Jλnf (xn), xn) = 0. In addition, since {xn} is bounded, so is
{Jλnf (xn)}.

Let {xni
} be an arbitrary subsequence of {xn}. Then, since supn∈N d(x1, xn)<

∞, there exists a subsequence {xnij
} of {xni

} such that xnij

∆
⇀ x0 and

λnij
→ λ0 ∈ ]0,∞[.
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We first prove that {f(Jλnij
f (x0), Jλ0f (x0))} is bounded. Since a lower

semicontinuous convex function is also lower semicontinuous for ∆-convergent
sequences, using the fact that {Jλnij

f (xnij
)} is ∆-convergent to x0, we have

f(Jλ0
(x0), x0) ≤ lim inf

j→∞
f(Jλ0f (x0), Jλnij

f (xnij
))

≤ lim inf
j→∞

(−f(Jλnij
f (xnij

), Jλ0f (x0)))

≤ − lim sup
j→∞

f(Jλnij
f (xnij

), Jλ0f (x0))

and thus

lim sup
j→∞

f(Jλnij
f (xnij

), Jλ0f (x0)) ≤ −f(Jλ0
(x0), x0).

It follows that {f(Jλnij
f (xnij

), Jλ0f (x0))} is bounded above. On the other

hand, from the definition of the resolvent, we have

λnij
f(Jλnij

f (xnij
), y) +

1

2
(d(x, y)2 − d(x, Jλnij

f (xnij
))2

− d(y, Jλnij
f (xnij

))2) ≥ 0

for all y ∈ K. Letting y = Jλ0f (x0), we have

f(Jλnij
f (xnij

), Jλ0f (x0))

≥ − 1

2λnij

(d(x, Jλ0f (x0))
2−d(x, Jλnij

f (xnij
))2−d(Jλ0f (x0), Jλnij

f (xnij
))2).

Since infn∈N λn>0 and {Jλn
(xn)} is bounded, we get {f(Jλnij

f (xnij
), Jλ0f (x0))}

is bounded below. Consequently, we obtain {f(Jλnij
f (xnij

), Jλ0f (x0))} is a

bounded real sequence. We put

M = sup
j∈N

f(Jλnij
f (xnij

), Jλ0f (x0)).

We next show that lim supj→∞ d(Jλnij
f (x0), Jλ0f (x0)) = 0. From the defi-

nition of the resolvent, we have

λnij
f(Jλnij

f (x0), y) +
1

2
(d(x0, y)

2 − d(x0, Jλnij
f (x0))

2 − d(y, Jλnij
f (x0))

2) ≥ 0

for every y ∈ K. Letting y = Jλ0f (x0), we have

λnij
f(Jλnij

f (x0), Jλ0f (x0))

+
1

2
(d(x0, Jλ0f (x0))

2 − d(x0, Jλnij
f (x0))

2 − d(Jλ0f (x0), Jλnij
f (x0))

2) ≥ 0.
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In a similar way, We also have

λ0f(Jλ0f (x0), Jλnij
f (x0))

+
1

2
(d(x0, Jλnij

f (x0))
2 − d(x0, Jλ0f (x0))

2 − d(Jλ0f (x0), Jλnij
f (x0))

2) ≥ 0.

Summing both sides of these inequalities, we get

λnij
f (Jλnij

f (x0), Jλ0f (x0))

+ λ0f(Jλ0f (x0), Jλnij
f (x0))− d(Jλ0f (x0), Jλnij

f (x0))
2 ≥ 0.

By Condition 2 (ii), we have

λ0f(Jλ0f (x0), Jλnij
f (x0)) ≤ −λ0f(Jλnij

f (x0), Jλ0f (x0)).

Therefore,

λnij
f(Jλnij

f (x0), Jλ0f (x0))

− λ0f(Jλnij
f (x0), Jλ0f (x0))− d(Jλ0f (x0), Jλnij

f (x0))
2 ≥ 0.

Thus, we have

d(Jλ0f (x0), Jλnij
f (x0))

2 ≤ (λnij
−λ0)f(Jλnij

f (x0), Jλ0f (x0)) ≤
∣∣∣λnij

− λ0

∣∣∣M.

Therefore we obtain

lim sup
j→∞

d(Jλnij
f (x0), Jλ0f (x0)) = 0.

We show x0 is a fixed point of Jλ0f by contradiction. If x0 ̸= Jλ0f (x0), then

lim sup
j→∞

d(xnij
, x0)

< lim sup
j→∞

d(xnij
, Jλ0f (x0))

≤ lim sup
j→∞

d(xnij
, Jλnij

f (xnij
)) + lim sup

j→∞
d(Jλnij

f (xnij
), Jλ0f (x0))

≤ lim sup
j→∞

d(Jλnij
f (xnij

), Jλnij
f (x0)) + lim sup

j→∞
d(Jλnij

f (x0), Jλ0f (x0))

≤ lim sup
j→∞

d(xnij
, x0) + lim sup

j→∞
d(Jλnij

f (x0), Jλ0f (x0))

= lim sup
j→∞

d(xnij
, x0),

which is a contradiction. Hence x0 = Jλ0f (x0).
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Since xnij
= PCnij

∩Qnij
x1 ∈ Cnij

∩Qnij
and S ⊂ Cnij

∩Qnij
for j ∈ N, we

have

d(x1, PSx1) ≤ d(x1, x0)

≤ lim inf
j→∞

d(x1, xnij
) ≤ lim sup

j→∞
d(x1, xnij

)

= lim sup
j→∞

d(x1, PCnij
∩Qnij

x1) ≤ d(x1, PFx1).

Thus, we have

lim
j→∞

d(x1, xnij
) = d(x1, x0) = d(x1, PSx1).

Thus we get x0 = PSx1. By Lemma 2.1, the facts that xnij

∆
⇀ x0 = PSx1

and limj→∞ d(x1, xnij
) = d(x1, PSx1) imply xnij

→ PSx1. Consequently, we

obtain xn → PSx1, which is the desired result. □
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