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THE CQ PROJECTION METHOD AND EQUILIBRIUM
PROBLEMS IN HADAMARD SPACES

YASUNORI KIMURA AND SOTA NAIKI

ABSTRACT. We consider equilibrium problems in Hadamard spaces and
prove the convergence of an iterative sequence generated by the CQ pro-
jection method.

1. INTRODUCTION

An equilibrium problem was originally proposed by Blum and Oettli [1] in
the setting of Banach spaces. This problem generalizes various kinds of non-
linear problems such as convex optimization problems, saddle point problems,
fixed point problems, variational inequality problems, and others. In 2005,
Combettes and Hirstoaga [2] considered a notion of the resolvent for an equi-
librium problem in Hilbert spaces, and Kimura and Kishi [4] generalized their
result to Hadamard spaces in 2017. The definition of an equilibrium problem
is as follows:

Find € K such that f(x,y) >0 for all y € K,

where K is a nonempty closed convex subset of a geodesic space and f: K x
K — R. Combettes and Hirstoaga proposed the following results for equilib-
rium problems: Let H be a Hilbert space and K a nonempty closed convex
subset of H. The resolvent of a bifunction f: K x K — R is a set-valued
operator Jy: H — 2K defined by

for x € H. We assume the following conditions for f.

Condition 1. Let H be a Hilbert space and K a nonempty closed convex
subset of H. We suppose that a bifunction f: K x K — R satisfies the following
conditions:

(i) f(z,z) =0 for any z € K;
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(i) f(z,y) + f(y,x) <0 for any z,y € K;
(iii) for every = € K, f(x,-): K — R is lower semicontinuous and convex;
(iv) for every y € K, f(-,y): K — R is upper hemicontinuous.

Theorem 1.1 (Combettes and Hirstoaga [2]). subset of H. Suppose that f :
K x K — R satisfies Condition 1 and let

Sp={z e K: f(z,y) >0 (Vy € K)}.

Then:
(i) D(Jy) = H;
(i) Jy is single-valued and firmly nonexpansive;
(iii) F(Jp) = S;

(iv) Sy is closed and conve.

The result (i) was proved by Blum and Oettli [1]. To prove it, we need to use
the Schauder fixed point theorem. However, we cannot apply a similar tech-
nique to a Hadamard space; the structure of convex combinations is different
from that of a Hilbert space. Hence we need to assume a condition called the
convex hull finite property to a Hadamard space.

In 2012, Kimura and Satdé proved the CQ projection method in CAT(1)
spaces. Since a Hadamard space is also CAT(1) space, it means that the CQ
projection method in CAT(1) spaces can be applied to the case of Hadamard
spaces. In this paper, we attempt to apply the CQ projection method in
Hadamard spaces to equilibrium problems by using resolvent of the bifunction
and obtain a convergence theorem to a solution to this problem.

2. PRELIMINARIES

Let X be a metric space. For z,y € X, a mapping ¢ : [0,{] — X is called
a geodesic if ¢ satisfies ¢(0) = z, c¢(l) = y,and d(c(u), c(v)) = |u — v| for every
u,v € [0,1]. If for any points z,y € X, there exists a geodesic with endpoints
x and y, then X is called a geodesic metric space. In what follows, we assume
that a geodesic always exists uniquely for each pair of endpoints. Such a space
is said to be uniquely geodesic.

For a uniquely geodesic space X, the image of geodesic with endpoints
x,y € X is denoted by [z,y]. For z,y,z € X, a geodesic triangle A(x,y, 2) is
defined by A(x,y,2) = [y, 2] U [z,2] U [z,y]. For a triangle A(z,y,z) C X, let
NA(Z,7,Z) C E? be such that each corresponding edge has the same length as
that of the original triangle. It is called a comparison triangle of A(x,y,z). A
point P € [Z, 7] is called a comparison point of p € [z,y] if d(z, z) = d(T, Z).

X is called a CAT(0) space if for every p,q € A(x,y,z) C X and their
corresponding points P, € A(Z, 7, Z) satisfy that d(p, q) < dg2(D, q), where dg2
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is the Euclidean metric. A Hadamard space is defined as a complete CAT(0)
space.

Let X be a geodesic metric space and {z,} a bounded sequence of X. For
z € X, we put r(z,{z,}) = limsup,,_, ., d(z,z,). The asymptotic radius of
{zn} is defined by r({z,}) = inf e x r(z, {z,}). Further, the asymptotic center
of {x,,} is defined by

AC({wn}) = {z € X ir(z,{wn}) = r({zn})}.

If AC({zn,}) = {x0} for any subsequences {z,, } of {z,}, that is, their asymp-
totic center consists of the unique element ¢, then we say {z,} is A-convergent

to x¢ and we denote it by x,, A Tg.

Lemma 2.1 (Kimura [3]). Let X be a Hadamard space and {x,} a sequence
in X. Suppose that {x,} is A-convergent to x € X and {d(xy,,p)} converges
to d(z,p) for some p € X. Then {x,} converges to x.

Let X be a Hadamard space and let T" be a mapping from X to X. The
set of all fixed points of T is denoted by F(7T). We say T is nonexpansive if
d(Tz,Ty) < d(z,y) for every z,y € X. T is said to be quasinonexpansive if
F(T) # 0 and d(Tz, z) < d(z,z) for every € X and z € F(T).

A mapping T : X — X is said to be A-demiclosed if ¢ € F(T) whenever
{zn} is A-convergent to z¢ and lim,,_, o d(x,, Tx,) = 0. T is said to be firmly
metrically nonspreading if

2d(Ta, Ty)? < d(a,Ty)? + d(Tx,y)? — d(z, Tx)* — d(y, Ty)*

for any x,y € X, see [6]. Moreover, a firmly metrically nonspreading mapping is
nonexpansive and A-demiclosed. If F(T') is nonempty, then a firmly metrically
nonspreading mapping is quasinonexpansive.

Let X be a Hadamard space and F a nonempty finite family of points of X.
Then a convex hull of E is defined by

WE = G X,

n=0

where Xg = E, X, = {tun—1 & (1 — t)vp_1 : Up_1,0p—1 € Xp_1,t € [0,1]} for
n € N.

We say that a Hadamard space X has the Convex Hull Finite Property
(CHFP) if every continuous mapping f : @0 E — ©o F has a fixed point for
every finite subset E of X.

Following Kimura and Kishi [4], we assume the following conditions for f
when we consider an equilibrium problem.
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Condition 2 (Kimura—Kishi [4]). Let X be a Hadamard space and K a
nonempty closed convex subset of X. We suppose that a bifunction f : KxK —
R satisfies the following conditions:
(i) f(z,z) =0 for any z € K
(i) f(z,y) + f(y,z) <0 for any =,y € K;
(iii) for every x € K, f(x,-) : K — R is lower semicontinuous and convex;
(iv) for every y € K, f(-,y) : K — R is upper hemicontinuous.

Following the definition of the resolvent on a Hilbert space, they define a
resolvent on this space. Let X be a Hadamard space and K a nonempty closed
convex subset of X. The resolvent of bifunction f: K? — R is a set-valued
operator Jy : X — 2K defined by

) = {2 € K fle) + 5o - do 9 - . 2P) 20 (€ K) |

forz e K.

Theorem 2.2 (Kimura—Kishi [4]). Let X be a Hadamard space with CHFP and
let K be a nonempty closed conver subset of X. Suppose that F': K x K — R
satisfies Condition 2 and let

Ji(x) = {z eK: f(z,y)+ %(d(ac,y)2 —d(z,2)? —d(y,2)?) >0 (Vy € K)} .

Then,

) D(Jy) = X;

) Jy is single-valued, firmly metrically nonspreading, and A-demiclosed;

i) F(J;) = S; = {w € K : fla,y) > 0 (vy € K)}:
)

3. THE MAIN RESULT

We obtain the following convergence theorem of an iterative scheme to a
solution to an equilibrium problem. The underlying space is a Hadamard space
and the approximate sequence is generated by the CQ method.

Theorem 3.1. Let X be a Hadamard space with CHFP and K a closed convex
subset of X. Suppose that {z € K : d(u,z) < d(v,2)} and {z € K : d(u, 2)? <
d(v,2)? — d(u,v)?} are convex for every u,v € X. Suppose that the set S =
{r € K : f(z,y) > 0 (Vy € K)} is nonempty. Let {\,} C R such that
0 < infpen An < SUP,eny An < 00, and

Irar(@)={ € K M (eun) 5 o) = 2 = d(n2) 2 0 (y € ) }.
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For a given initial point 1 € K, generate a sequence {x,} as follows:
Crny1 ={z€ K :d(Jx,5(zn),2) < d(xn,2)},
Q7L+1 = {Z EK: d(mnaz)Q < d(]?l,Z)Q - d(a:l,xn)2},
Tn4+1 = PC7L+1ﬂQn+1'r1

for each n € N. Then {x,} is well-defined and converges to Psx1 € K, where
Po : K — C is the metric projection of C onto a nonempty closed convex
subset C' of K.

Proof. We first show that {z,} is well-defined and .S C [,y Crnt1 N Qni1 by
induction. An initial point x; € K is given. We have

Cy = {Z e K: (J,\lf(xl),2> < d(Il,Z)},

Q2= {2 € K :d(x1,2)? <d(x1,2)* — d(x1,71)*}
= {z c K: d($1,2)2 < d(xlvz)Q}
=K.

We prove S C CoN Q2. Let z € S = F(Jy,5). Since Jy, s is firmly metrically
nonspreading, it is quasinonexpansive. It follows that

d(‘])\lf(ml)VZ) < d(xl’z)

and thus z € Cy. We also have z € K = )3. Therefore, z € Cy N Q2. Hence,
we get S C Co N Q.

Suppose that x1,zs, ..., x; are defined and both Cy41 and Qg1 are closed
convex subsets of K such that S C Cixy11 N Q41 for fixed £ € N. Then since
Clr+1 NQk41 is a nonempty closed subset of K by the assumption of the space,
we can define 41 = P, ,nQ,,,T1. Further, both Cy42 and Q2 are closed
and convex. Let z € S. Since Jy,,, ¢ is firmly metrically nonspreading, we get

d(JAk+1f(xk+1)ﬂ Z) < d(l‘k, Z),

and thus z € Cyyo. This implies that S C Cg1o.
To prove S C Qi+2, it is sufficient to show that Cx41 N Qry1 C Qr42. For
any z € Cry1 N Qgy1 and ¢ € 10, 1],

tz® (1 —t)aprr =tz ® (1 =) Poy 1 nQui 21 € Crg1 N Qrgr
It follows that

(a1, wp11)? < d(xr,t2 @ (1= Hagyg)?
< td(z1,2)* + (1 = t)d(x1, 2541)% — t(1 = t)d(2, Tp11)?,
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and thus
t(1 = t)d(wpy1,2)* < td(w1,2)* + (1= t)d(w1, 241)° = d(21, 2p41)?
= td(z1,2)? — td(z1, T4 1)>.
Dividing by ¢ and letting t — 0, we have
d(xpy1,2)? <d(z1,2)? —d(x, 2p41)?

Thus z € Qk42. Therefore, we have Ciy1 N Q11 C Qry2. Hence, Ciya N
Qp+2 includes S. It follows by induction that {z,} is well-defined and S C

mnEN Cn—i—l N Qn—H-
Next, we show lim, o d(Jx, ¢(25), 2,) = 0. For every n € N, we have

d(z1,2,) = d(z1, Po,ng,z1) < d(z1, Psz1) < o0.
It follows that sup,,cy d(x1, T,) < 0o and {z,} is bounded. Moreover, from the
definition of @, 41, we get
d(xlvl.n) = d(xla PQn,+1x1) < d(x17PCn,+lan+1xl) = d(xhxn-‘rl)'
for n € N. Thus {d(x1,z,)} is an increasing real sequence so that it has a limit
a =lim,, o d(z1,z,) < 00. Since z,+1 € Qny1, we have
d(wn;xn+1)2 S d(lﬂl, xn+1)2 - d($17$n)2.
for n € N. Tending n — oo, we have

0 < liminf al(ﬂvn,;zcnﬂ)2 < limsup al(a:n,;vnﬂ)2 <a—a=0.
n—oo n—o0o

Hence, limy, 00 d(Zy, Tp41) = 0. Since 2,11 € Cpry1, it holds that

d(JA7Lf(33n),$n+1) < d(Xp, Tpi1)-
These facts imply that

nll)H;o d(Ix, (Tn), 2n) < nli_)rI;C(JAnf(xn)»xn+1) + d(@nt1,Tn))

< lim (d(zn, Znt1) + d(@nt1,2n))

n—oo

=2 lim d(zp,Tnt1)

n—oo

=0.

Hence lim,,_,o0 d(Jx, f(@n), zn) = 0. In addition, since {x,} is bounded, so is

{Inr(@n)}.

Let {z,, } be an arbitrary subsequence of {x, }. Then, since sup,, ¢y d(x1, ) <
00, there exists a subsequence {xnj} of {z,,} such that Tn,, A 20 and
/\nij — X € ]0,00[
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We first prove that {f(Jx, f(%0), rs(20))} is bounded. Since a lower

semicontinuous convex function is also lower semicontinuous for A-convergent
sequences, using the fact that {Jy, f(x,, )} is A-convergent to z(, we have
i 5

F(xo(w0), o) < Himinf f(xof(20), Ix,, (#ni,)
< liminf(—f (s, 5 (@n,;)s Tros (0)))

< —lmsup (I, 5(@n,,): Tras(@0))

Jj—o0
and thus
tmsup f(Jx,, 5(@n,) ) Tros (70)) < —F (g (o), o).

j—o0
It follows that {f(J,\ni_f(xmj),J,\Of(xo))} is bounded above. On the other

hand, from the definition of the resolvent, we have

1
Anij f(JAnij f(an] )a y) + *(d(l‘7 y)2 - d(SC, J)\"ij f(z"ij ))2

2
= d(y, I, 5(@n;,))?) 2 0

for all y € K. Letting y = Jy,(x0), we have

T 1 (@0, ), Tno g (@0))
> o T o) Pd T n, )P A (w0), T, 5, )2

Since inf,,eny A, >0 and {Jy, (zy)} is bounded, we get {f(Jx, f(@n;. ), Irnor(z0))}
iy 3
is bounded below. Consequently, we obtain {f(Jx, f(@n, ), Iror(z0))} is a
g 4

bounded real sequence. We put

M = sup f(J,\ni_f(CCm].), Ixof(70))-
JEN ’

We next show that limsup;_,., d(Jx,, f(z0),Jx,r(w0)) = 0. From the defi-
ij

nition of the resolvent, we have

1
Mgy F(Ixn, 1 (20)y) + 5 (d(zo, y)? — d(o, Tan, #(x0))? —d(y, I, 7(20))%) =0

for every y € K. Letting y = J, r(x¢), we have
Ani, F(Ix,, (@), Ino g (20))

<)

+ 5 (d(wo, Iagf(20))* — d(wo, JAnijf(ﬂCo))2 —d(Jrg(w0), Ir,, £(20))?) > 0.

J

N |
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In a similar way, We also have

Ao f(Ixof (o), San, 7(z0))

+ %(d(l’oa JAn,.,jf(xo))2 — d(w0, Jag 1 (20))* = d(Jxy (o), Tan,, (20))%) > 0.
Summing both sides of these inequalities, we get
iy 1 (Ixn, 1 (@0), Tres (20))
+ A0 f (Daog(@0)s Ia,, 1(20)) = d(Iags (20), I, #(20))? > 0.
By Condition 2 (ii), we have
Aof (Trof (@0), In,, £(@0)) < =Aof(In,, 7(x0)s Iaos(20))-
Therefore,
Aniy F(Ix,, £ (@0), Ino g (20))
= Aof (an, £(20), Irof(20)) = d(Iros (20), JAnijf(Io))2 > 0.
Thus, we have

d(JIxo s (o), JAnijf(i'fo))2 < Ay, = 20)f (I, £(@0), Ingr (o)) <

Au, — )\0’ M.
Therefore we obtain

lim sup d(JAnijf(xO)» Irof(20)) = 0.

Jj—o0
We show x is a fixed point of Jy,f by contradiction. If zg # Jx,(z0), then

limsup d(x,, ,xo)
Jj—o0 7

< lim sup d(xnij s Inof(20))

Jj—o0

<limsup d(xn, , I, ¢(zn, ))+lmsupd(JIx, ¢(Tn, ), Iror(@0))
Jj—o0 J K 7 j—o0o ‘3 J

< limsupd(Jx,, £(@n, ) JIx,, (@) +limsupd(Jx,, f(xo), Jror(20))
j—o0 N . J j—o0 J

<lim sup d(an ) 1‘0) + lim sup d(JAn» f(xO)v J)\of(xO))
Jj—o0 7 j—o0 i

= limsup d(zn, , o),
j—00 ’

which is a contradiction. Hence zg = Jy, r(20).
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Since Tn,, = Po,, nQ., T1 € C'mj NQn,, and 5 C Cnij NQn,, for j €N, we
i @ny; , :

have

d(xl, PS],‘1) S d(ml, .230)

< liminf d(z1,xy,, ) < limsupd(zy,zn, )
Jj—o0 J j—o0 J

= limsupd(z1, P, g, 1) < d(z1, Przi).
i ey

Jj—o00

Thus, we have

lim d(z1, 2., ) = d(x1,20) = d(x1, Psx1).
Jj—o0 J

Thus we get ©g = Psx;. By Lemma 2.1, the facts that Tn;, A g = Psx1

and lim;_,o d(xl,xnij) = d(z1, Psx1) imply T, — Psxq. Consequently, we

obtain x,, — Psx1, which is the desired result. O
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