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ABSTRACT. We consider a generalized approximation method of Browder
type in a Hadamard space with multiple anchor points. We obtain its
convergence to a minimizer of a certain function defined by anchor points
on the set of all fixed points of a mapping.

1. INTRODUCTION

Approximation of fixed points of a nonexpansive mapping is a central topic
in nonlinear analysis and it has been investigated by a large number of mathe-
maticians. There are many kinds of approximation methods. We will focus on
the sequences metrically converging to a fixed point of a given mapping.

One of the most important methods is a convergence theorem proved by
Browder [3] as follows: Let T be a nonexpansive mapping defined on a closed
convex subset X of a uniformly convex Banach space satisfying certain condi-
tions. Then, for u € X and ¢ € |0, 1], there exists a unique point z; € X such
that x; = tu + (1 — t)Txs. Moreover {z:} converges to a fixed point of T as
t — 0, which is closest to u.

Another important method is the iterative scheme of Halpern type. This
sequence is defined as follows: For a mapping 7: X — X and given points
u,r; € X, let

Tpy1 = apu~+ (1 — )T,
for n € N, where {a,} is a coefficient sequence for convex combination. In
1992, Wittmann [10] proved that if 7' is a nonexpansive mapping defined on a
closed convex subset X of a Hilbert space, then {x,,} converges to a fixed point
of T which is closest to u under certain conditions of {a,}.
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These methods have been studied in various generalized settings and a large
number of related results have been proved. We focus on the fact that these
two approximating sequences have the same limit point, a fixed point closest
to u. A point u is called an anchor point of the scheme. Kimura and Wada [7]
considered the iterative scheme of Halpern type with multiple anchor points in
the setting of a Hadamard space.

In this work, we consider a generalized approximation method of Browder
type with multiple anchor points in Hadamard spaces. The sequence generated
by this method converges to a minimizer of a certain function defined by anchor
points on the set of all fixed points of a mapping. We use a notion of generalized
convex combination among more than two points, which is proposed by [4].

2. PRELIMINARIES

Let X be a metric space. For z,y € X, a geodesic ¢: [0,]] = X connecting
these two points is defined as a mapping satisfying | = d(z,y), ¢(0) = =z,
c(l) = y, and d(c(s),c(t)) = |s — t| for any s,t € [0,]. If a geodesic exists for
every two points, the space X is called a geodesic space. In what follows, a
geodesic ¢ is assumed to be unique for each z,y € X and the image of ¢ is
denoted by [z,y]. Such a space is referred to as a uniquely geodesic space. In
this case, ¢ is a unique isometry from [0, d(z,y)] to [z, y].

In a uniquely geodesic space, we can define a convex combination between
two points as follows. For z,y € X and ¢ € [0, 1], there exists a unique z € [z, y]
such that d(z,z) = (1 — t)d(z,y) and d(y,z) = td(z,y). We denote it by
z = tx ® (1 — t)y. Using this notion, we define a convex subset of X in a
natural way; C C X is convex if to & (1 —t)y € C for any z,y € C and
te0,1].

A Hadamard space is defined as a complete geodesic space having a certain
geometric property. This property is usually described by using a comparison
triangle defined on a model space; see [1, 2] for instance. We define it by the
following equivalent form. Namely, a Hadamard space is a complete uniquely
geodesic space satisfying that

d(te @ (1 - t)y,2)? < td(, 2)* + (1 - O)d(y, 2)* — t(1 - Hd(z, y)?

for every z,y,2z € X and t € [0,1]. We know that the following inequality holds
[2]:
d(u7 w)Q + d(U, y)2 - d(U, m)Q - d(u? y)2 < 2d(“7 U)d(.’l?, y)

for any four points u,v,z,y € X.
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Let {x,} be a bounded sequence in a metric space X. We say that z is an

asymptotic center of {x,} if it satisfies
limsup d(z,, z) = inf limsup d(z,,y).
n— 00 yeX nooo

In a Hadamard space, an asymptotic center of every bounded sequence is known
to be unique. A bounded sequence {x,,} is said to be A-convergent [9] to z if an
asymptotic center of every subsequence of {z,} is equal to z. It is known that
every bounded sequence in a Hadamard space has a A-convergent subsequence.
We also know [5] that if {z,} is a A-convergent sequence in a Hadamard space
with a A-limit z, then

d(z,y) < liminf d(z,,y)
n—oo
for every y € X. For more details of A-convergence, see [8, 9].
The following lemma describes the relation between A-convergence and con-

vergence in metric, which is known as the Kadec-Klee property in Banach
spaces.

Lemma 2.1 (Kimura [6]). Let {z,} be a A-convergent sequence in a Hadamard
space X with its A-limit x € X. If {d(xn,u)} converges to d(x,u) for some
u € X, then {z,} converges to x.

Let X be a Hadamard space. A mapping T: X — X is called a nonexpansive
mapping if
d(Tz, Ty) < d(z,y)
for all z,y € X. We denote the set of fixed points of T' by Fix T, that is
FixT ={z€ X |Tz=z}.

We know that Fix T is closed and convex, which is the same as the case where
the underlying space is a Hilbert space.

A contraction U: X — X is defined as a mapping such that for some r €
[0, 1], it satisfies that

d(Uz,Uy) < rd(z,y)

for every z,y € X. The famous Banach contraction principle guarantees the
existence and uniqueness of a fixed point of U.

3. A CONVERGENT SEQUENCE TO A FIXED POINT

In the main result of this work, the following lemma, which is essentially
proved in [4], plays an important role.
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Lemma 3.1 (Hasegawa-Kimura [4]). Let X be a Hadamard space and C a
nonempty closed convex subset of X. Let uy,us,...,u, € X and 81,82,...,05, €
[0,1] such that Y, _, B = 1. Define a function f: C — R by

f)=>_ Brd(y,ux)?
k=1

for everyy € C. Then, [ has a unique minimizer on C.

The next theorem guarantees the well-definedness of the sequence considered
in our main result.

Theorem 3.2. Let X be a Hadamard space and T: X — X a nonexpansive
mapping. Let ui,us, ..., u, be points in X. Let a €10,1[ and B, B2,...,8" €
[0,1] such that ", _, 8% = 1. Then there exists a unique point xo € X satisfying

xg € argmin aZﬁkd(y,uk)Q + (1 — a)d(y, Tzo)? | .
yeXx k=1
Proof. Define a mapping U: X — X by
Uz = argmin aZﬁkd(y,uk)Q + (1 —a)d(y, Tz)?
yex k=1

for every x € X. Then, by Lemma 3.1, U is well defined as a single-valued
mapping on X. Moreover, we may show that U is a contraction. Indeed, for
z,z’ € X and t € ]0, 1], we have

o Z BEA(Uz,up)* + (1 — a)d(Uz, Tx)*
k=1

<a) prdtUz e (1-t)Uz',u)? + (1 - a)dtUz & (1 — t)Ua’, Tx)?
k=1

< aiﬁk (td(Uz,up)? + (1 — t)d(Ux',ug)® — t(1 — t)d(Uz, Uz')?)
k=1
+(1—a) (tdUz,Tz)? + (1 — t)d(Us', Tx)? — t(1 — t)d(Uz,Uz")?)

<t (a i:ﬂkd(Uac,uk)2 +(1- a)d(Ux,Tx)2>

k=1

+(1-1) (aiﬁkd(U@"’,uk)Q—!— (1- a)d(Ua:',Tz)2> —t(1 —t)d(Uz,Uxz")?,

k=1
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and thus

aiﬁkd(Ux,uk)Q + (1 - a)d(Uz, Tx)?

k=1

<a Zﬁkd(Ugc',uk)2 + (1 —)d(U2', Tx)? — td(Uz,Uz')>.

Letting t — 1, we have
d(Uz,Uz")* < aZﬁk (Uz,up)? — d(Uz’, ug)?)

+(1-a)(dUz,Tz)* — d(Uz',Tz)?) .

In the same way, we also have

d(Uz',Ux)* < ai,@k (AU’ up)? — d(Uz, ug)?)
k=1
+ (1 - o) (dUz',T2')* — d(Uz,Tz')?).

Summing up these inequalities, we obtain

2d(U:c’ Uz)?

(1-a)(dUz,Tz)* —d(U2',Tz)* + d({Us', T2")* — d(Uz, T2')?)

< 2(1 —a)d(Tz,Tz")d(Uz,Uz")

<2(1 - a)d(x,2")d(Uz,Ux’),
and hence

d(Uz',Ux) < (1 — a)d(x,2').

Since 0 < a < 1, it implies that U is a contraction. Thus there exists a unique
fixed point xg € X. That is,

=Uzxy = argmin | o Z BEd(y, ug)* + (1 — a)d(y, Tzo)? | .
yeX k=1
This is the desired result. O

Now we show our main result. The following is a convergence theorem of
the Browder type with multiple anchor points in Hadamard spaces.

Theorem 3.3. Let X be a Hadamard space and T: X — X a nonexpansive
mapping such that FixT # 0. Let ui,us,...,u, be a finite family of anchor
points in X. Let {a,} C 0, 1] be a real sequence such that o, — 0 as n — oo,
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and fork =1,2,...,r, let {BF} C [0,1] be real sequences such thaty ", _, BE =1
for everyn € N and Bk — g% €[0,1] as n — co. Define {z,} C X by

= argmin <an ZB (y, up)? + (1 — ozn)d(y,Txn)2>

yeX k=1

for each n € N. Then {z,} converges to a unique minimizer of a function g
on FixT as n — oo, where g: X — R is defined by

= Brd(y, wr)?
k=1

forye X.

Proof. We know that Theorem 3.2 imples the well-definedness of z,, for every
n € N. It is also known by Lemma 3.1 that there exists a unique minimizer p
of g on Fix T, that is,

I

p = argmin 3 8d(y. we ).
YEFiXT 11

Then, from the definition of x.,, for t € |0, 1] we have

ay, Z ﬁﬁd(mn, uk)2 + (1 — ap)d(zn, Tavn)2
k=1

< ay Zﬁsd(txn D (1 - t)p7 uk)2 + (1 - Oén)d(tl'n @ (1 - t)p, T‘rn)Q
k=1

<t (an iﬁﬁd(wn,uk)z +(1- an)d(xn,Txn)2>

(1-1) (ozn Zﬁ (p,ug)? + (1 — ay,)d(p, Txn)2> —t(1 —t)d(zp, p)?
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and thus it follows that

an Zﬁ (@, u)® + (1 = an)d(zp, T
< ap Zﬁ p7 uk (1 - ozn)d(p, Txn)2 - td(xnvp)Z

<ay Z 6 p7 uk (1 - an)d(pa xn)z - td(xmp)2-

Letting t — 1, we have

anZ/D' (@, uk)® + (1 = an)d(z, Ty

S Qn (Z /3565(13’ uk)2 - d(p7 xn)2> .

k=1

From this inequality, we obtain
0 < Zﬁ pauk —d(p,$n)2
and thus

d(p,xn)* <Y Bd(p, ux)’

k=1

< ma d(p, ui)?
_ke{l,zf,r} (P, k)

for every n € N. It implies that {z,} is bounded. By (3.1), we also have

anZﬁrli x'ruuk < Qp, (Zﬂ pa uk) - d(p7 xn)2>
k=1

k=1
S Qp Z Bﬁd(% uk)Q'
k=1
Since a,, > 0, it follows that
(3.2) > Brd(en,we)? <Y Brd(p,ux)®
k=1 k=1

for every n € N.
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To show that {x,,} is A-convergent to p, we take a subsequence {z,,} C {z,}
arbitrarily with its asymptotic center v € X, and will prove v = p. Taking a
subsequence repeatedly, we can find a subsequence {2} of {z,,} such that

lim d(x j,p) = limsup d(z,,,p)

Jj—oo i—00
and {z’} is A-convergent to some ¢ € X. We first show that ¢ = p. Let
{a/j} and {B}"} be subsequences of {a,,,} and {85 } corresponding to {x},
respectively. That is, since we may write a:; = Tn, using this subscript, we
define ﬁ;k = ﬂjj and a} = an,, for every j € N. Then, by (3.1) we have

0 < (1 — of)d(a}, Tx) <Z 5/kd (p,ux)? — d(p, 99;)2> :

Since o; — 0 as j — oo and {2} is bounded, we have lim;_, d(2’;, T'z;) = 0.
It follows that

limsup d(«;, Tq) < limsup(d(z}, Tx’;) + d(Tx’;, Tq))

j—o0 j—o0

< limsup d(z}, Tx}) 4 limsup d(Tz};, Tq)

j—oo Jj—oo

< limsup d(a/, 5, q).

Jj—o0

Since ¢ is an asymptotic center of {x;}, so is T'q. From the uniqueness of the
asymptotic center of a bounded sequence, we have ¢ = Tq, or equivalently,
q € FixT. By (3.2), we have

Zﬁ’kd o, up)? < ﬂ;kd(p, ug)?
k=1
for every j € N, and thus

lim inf E B’kd J:J,uk) < hmlnf E ﬁ/kd (p, ug)?
j—o0
k=1 k=1

—ZB (P, ur)?* = g(p)-
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Since ¢ is a A-limit of {z;}, we have
g(q) = Z BEd(q,up)? < Z Bk hm mf d(zf, ug)?
k=1

< hmmfZﬁk m],uk)

j—00
N lijnigf; BiFd(wg, un)* < g(p).

This shows that ¢ is a minimizer of g on Fix7T'. From its uniqueness, we obtain
q = p, that is, p is an asymptotic center of {x;} From the assumptions of
{z’}, we have

limsup d(xy,,p) = hm d(x j,p)

1— 00
< hm sup d(z;,v)
j—o0
< limsupd(zp,,v).
i—>00
Hence p is also an asymptotic center of {x,,} and it implies that v = p. Since
v is an asymptotic center of a subsequence {x,,} of {z,}, which is arbitrarily
chosen, and it coincides with p, we conclude that {z,} is A-convergent to
p = argmin, cpicp Y py Brd(y, ur)?.
We finally show the convergence of {x,} to p. Since {x,} is A-convergent
to p, by (3.2) we have

Zﬂk D, U) <Z’B hmmfda:n,uk)

Slimianﬂ (zp, uk) <11msupZﬁ (T, up)?

n—00 n— 00

< lim sup Z B (p, up)?

n— oo
= Z B pa uk )
and hence

n—oo

lim > Bld(z,,ur)? = BFd(p,uk)?.
1
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Since g1, 32%,...,8" € [0,1] and >,_, 8% = 1, there exists ko € {1,2,...,r}
such that %0 > 0. Then, it follows that d(p, ux,) = lim,, o d(zn, uk, ). Indeed,
since we know

d(p, uk,) < liminf d(x,, uk,) < limsup d(zy, vk, ),

n—00 n—00

it is sufficient to show limsup,,_, . d(zn,ug,) < d(p,uk,). We prove it by
contradiction. If it does not hold, there exists a subsequence {z,,} C {z,}
such that limsup,, . d(Zn, Uk, )? = im0 d(@n,, Uk, )? > d(p, uk,)?. Then we
have

Z ﬁkd(pa uk)2 = Zﬂkd(pa uk)2 - ﬂkod(p, Uko)2
k=1

ksko

_ T k 2 _ pko 2
= nILH;o ; ﬁnd(xn; uk) 5 d(p, ng)

> lim ; B d(n,u)? = B lim d(an,,ur,)?

l—o0

T
= lim Zﬁkd(xm,uk)Q — lim ,Bkod(xm,uko)Q
l—o0 Pt l—o0
= lim Y prd(an,, u)?
k+#ko
> liminf BFd(wn, , up)?
l— 00
k+#ko
> Y Brd(p,ur).
k#ko

It is a contradiction and thus we have limsup,, , . d(@n, uk,) < d(p,ug,). It
implies that lim, e d(zp, ug,) = d(p, ur,) and by Lemma 2.1, we obtain p =
lim,, s %y, which is the desired result. O

Y%

In the end of this paper, we remark the case where the domain X of T is a
closed convex subset of a Hilbert space. Under this assumption, it follows from
the parallelogram law that

n

2 n—1
+ 3 DB -l

j=i+1 i=1

g@) => B lly —ul® =
k=1

T
y—_ B uy
k=1

Then, putting u =Y, _, B*uy,, we have a minimizer of ¢ on FixT is a unique
closest point to u. That is, we obtain the following result.
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Theorem 3.4. Let X be a closed conver subset of a Hilbert space and T: X —
X a nonexpansive mapping such that FixT # (). Let uy, us,...,u, be a finite
family of anchor points in X. Let {a,} C ]0,1] be a real sequence such that
an — 0 asn — 0o, and for k =1,2,...,r, let {*} C [0,1] be real sequences
such that Y, _, B% = 1 for every n € N and Bt — g* € [0,1] as n — o0.
Define {z,,} C X by

Ty = Qp, Z B,’iuk +(1—-ay)Tx,
k=1

for each n € N. Then {x,} converges to PrixT Y p_, B*uy, as n — oo, where
Prix 7 18 a metric projection of X onto FixT.
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