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These methods have been studied in various generalized settings and a large
number of related results have been proved. We focus on the fact that these
two approximating sequences have the same limit point, a fixed point closest
to u. A point u is called an anchor point of the scheme. Kimura and Wada [7]
considered the iterative scheme of Halpern type with multiple anchor points in
the setting of a Hadamard space.

In this work, we consider a generalized approximation method of Browder
type with multiple anchor points in Hadamard spaces. The sequence generated
by this method converges to a minimizer of a certain function defined by anchor
points on the set of all fixed points of a mapping. We use a notion of generalized
convex combination among more than two points, which is proposed by [4].

2. Preliminaries

Let X be a metric space. For x, y ∈ X, a geodesic c : [0, l] → X connecting
these two points is defined as a mapping satisfying l = d(x, y), c(0) = x,
c(l) = y, and d(c(s), c(t)) = |s− t| for any s, t ∈ [0, l]. If a geodesic exists for
every two points, the space X is called a geodesic space. In what follows, a
geodesic c is assumed to be unique for each x, y ∈ X and the image of c is
denoted by [x, y]. Such a space is referred to as a uniquely geodesic space. In
this case, c is a unique isometry from [0, d(x, y)] to [x, y].

In a uniquely geodesic space, we can define a convex combination between
two points as follows. For x, y ∈ X and t ∈ [0, 1], there exists a unique z ∈ [x, y]
such that d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y). We denote it by
z = tx ⊕ (1 − t)y. Using this notion, we define a convex subset of X in a
natural way; C ⊂ X is convex if tx ⊕ (1 − t)y ∈ C for any x, y ∈ C and
t ∈ [0, 1].

A Hadamard space is defined as a complete geodesic space having a certain
geometric property. This property is usually described by using a comparison
triangle defined on a model space; see [1, 2] for instance. We define it by the
following equivalent form. Namely, a Hadamard space is a complete uniquely
geodesic space satisfying that

d(tx⊕ (1− t)y, z)2 ≤ td(x, z)2 + (1− t)d(y, z)2 − t(1− t)d(x, y)2

for every x, y, z ∈ X and t ∈ [0, 1]. We know that the following inequality holds
[2]:

d(u, x)2 + d(v, y)2 − d(v, x)2 − d(u, y)2 ≤ 2d(u, v)d(x, y)

for any four points u, v, x, y ∈ X.
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Let {xn} be a bounded sequence in a metric space X. We say that z is an
asymptotic center of {xn} if it satisfies

lim sup
n→∞

d(xn, z) = inf
y∈X

lim sup
n→∞

d(xn, y).

In a Hadamard space, an asymptotic center of every bounded sequence is known
to be unique. A bounded sequence {xn} is said to be ∆-convergent [9] to z if an
asymptotic center of every subsequence of {xn} is equal to z. It is known that
every bounded sequence in a Hadamard space has a ∆-convergent subsequence.
We also know [5] that if {xn} is a ∆-convergent sequence in a Hadamard space
with a ∆-limit z, then

d(z, y) ≤ lim inf
n→∞

d(xn, y)

for every y ∈ X. For more details of ∆-convergence, see [8, 9].
The following lemma describes the relation between ∆-convergence and con-

vergence in metric, which is known as the Kadec-Klee property in Banach
spaces.

Lemma 2.1 (Kimura [6]). Let {xn} be a ∆-convergent sequence in a Hadamard
space X with its ∆-limit x ∈ X. If {d(xn, u)} converges to d(x, u) for some
u ∈ X, then {xn} converges to x.

LetX be a Hadamard space. A mapping T : X → X is called a nonexpansive
mapping if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X. We denote the set of fixed points of T by FixT , that is

FixT = {z ∈ X | Tz = z}.

We know that FixT is closed and convex, which is the same as the case where
the underlying space is a Hilbert space.

A contraction U : X → X is defined as a mapping such that for some r ∈
[0, 1[, it satisfies that

d(Ux,Uy) ≤ rd(x, y)

for every x, y ∈ X. The famous Banach contraction principle guarantees the
existence and uniqueness of a fixed point of U .

3. A convergent sequence to a fixed point

In the main result of this work, the following lemma, which is essentially
proved in [4], plays an important role.
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Lemma 3.1 (Hasegawa-Kimura [4]). Let X be a Hadamard space and C a
nonempty closed convex subset of X. Let u1, u2, . . . , ur ∈ X and β1, β2, . . . , βr ∈
[0, 1] such that

∑r
k=1 βk = 1. Define a function f : C → R by

f(y) =

r∑
k=1

βkd(y, uk)
2

for every y ∈ C. Then, f has a unique minimizer on C.

The next theorem guarantees the well-definedness of the sequence considered
in our main result.

Theorem 3.2. Let X be a Hadamard space and T : X → X a nonexpansive
mapping. Let u1, u2, . . . , ur be points in X. Let α ∈ ]0, 1[ and β1, β2, . . . , βr ∈
[0, 1] such that

∑r
k=1 β

k = 1. Then there exists a unique point x0 ∈ X satisfying

x0 ∈ argmin
y∈X

(
α

r∑
k=1

βkd(y, uk)
2 + (1− α)d(y, Tx0)

2

)
.

Proof. Define a mapping U : X → X by

Ux = argmin
y∈X

(
α

r∑
k=1

βkd(y, uk)
2 + (1− α)d(y, Tx)2

)
for every x ∈ X. Then, by Lemma 3.1, U is well defined as a single-valued
mapping on X. Moreover, we may show that U is a contraction. Indeed, for
x, x′ ∈ X and t ∈ ]0, 1[, we have

α

r∑
k=1

βkd(Ux, uk)
2 + (1− α)d(Ux, Tx)2

≤ α

r∑
k=1

βkd(tUx⊕ (1− t)Ux′, uk)
2 + (1− α)d(tUx⊕ (1− t)Ux′, Tx)2

≤ α

r∑
k=1

βk
(
td(Ux, uk)

2 + (1− t)d(Ux′, uk)
2 − t(1− t)d(Ux,Ux′)2

)
+ (1− α)

(
td(Ux, Tx)2 + (1− t)d(Ux′, Tx)2 − t(1− t)d(Ux,Ux′)2

)
≤ t

(
α

r∑
k=1

βkd(Ux, uk)
2 + (1− α)d(Ux, Tx)2

)

+ (1− t)

(
α

r∑
k=1

βkd(Ux′, uk)
2+ (1− α)d(Ux′, Tx)2

)
− t(1− t)d(Ux,Ux′)2,
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and thus

α

r∑
k=1

βkd(Ux, uk)
2 + (1− α)d(Ux, Tx)2

≤ α

r∑
k=1

βkd(Ux′, uk)
2 + (1− α)d(Ux′, Tx)2 − td(Ux,Ux′)2.

Letting t → 1, we have

d(Ux,Ux′)2 ≤ α

r∑
k=1

βk
(
d(Ux, uk)

2 − d(Ux′, uk)
2
)

+ (1− α)
(
d(Ux, Tx)2 − d(Ux′, Tx)2

)
.

In the same way, we also have

d(Ux′, Ux)2 ≤ α

r∑
k=1

βk
(
d(Ux′, uk)

2 − d(Ux, uk)
2
)

+ (1− α)
(
d(Ux′, Tx′)2 − d(Ux, Tx′)2

)
.

Summing up these inequalities, we obtain

2d(Ux′, Ux)2

≤ (1− α)
(
d(Ux, Tx)2 − d(Ux′, Tx)2 + d(Ux′, Tx′)2 − d(Ux, Tx′)2

)
≤ 2(1− α)d(Tx, Tx′)d(Ux,Ux′)

≤ 2(1− α)d(x, x′)d(Ux,Ux′),

and hence

d(Ux′, Ux) ≤ (1− α)d(x, x′).

Since 0 < α < 1, it implies that U is a contraction. Thus there exists a unique
fixed point x0 ∈ X. That is,

x0 = Ux0 = argmin
y∈X

(
α

r∑
k=1

βkd(y, uk)
2 + (1− α)d(y, Tx0)

2

)
.

This is the desired result. □

Now we show our main result. The following is a convergence theorem of
the Browder type with multiple anchor points in Hadamard spaces.

Theorem 3.3. Let X be a Hadamard space and T : X → X a nonexpansive
mapping such that FixT ̸= ∅. Let u1, u2, . . . , ur be a finite family of anchor
points in X. Let {αn} ⊂ ]0, 1[ be a real sequence such that αn → 0 as n → ∞,
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and for k = 1, 2, . . . , r, let {βk
n} ⊂ [0, 1] be real sequences such that

∑r
k=1 β

k
n = 1

for every n ∈ N and βk
n → βk ∈ [0, 1] as n → ∞. Define {xn} ⊂ X by

xn = argmin
y∈X

(
αn

r∑
k=1

βk
nd(y, uk)

2 + (1− αn)d(y, Txn)
2

)

for each n ∈ N. Then {xn} converges to a unique minimizer of a function g
on FixT as n → ∞, where g : X → R is defined by

g(y) =

r∑
k=1

βkd(y, uk)
2

for y ∈ X.

Proof. We know that Theorem 3.2 imples the well-definedness of xn for every
n ∈ N. It is also known by Lemma 3.1 that there exists a unique minimizer p
of g on FixT , that is,

p = argmin
y∈FixT

r∑
k=1

βkd(y, uk)
2.

Then, from the definition of xn, for t ∈ ]0, 1[ we have

αn

r∑
k=1

βk
nd(xn, uk)

2 + (1− αn)d(xn, Txn)
2

≤ αn

r∑
k=1

βk
nd(txn ⊕ (1− t)p, uk)

2 + (1− αn)d(txn ⊕ (1− t)p, Txn)
2

≤ t

(
αn

r∑
k=1

βk
nd(xn, uk)

2 + (1− αn)d(xn, Txn)
2

)

+ (1− t)

(
αn

r∑
k=1

βk
nd(p, uk)

2 + (1− αn)d(p, Txn)
2

)
− t(1− t)d(xn, p)

2
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and thus it follows that

αn

r∑
k=1

βk
nd(xn, uk)

2 + (1− αn)d(xn, Txn)
2

≤ αn

r∑
k=1

βk
nd(p, uk)

2 + (1− αn)d(p, Txn)
2 − td(xn, p)

2

≤ αn

r∑
k=1

βk
nd(p, uk)

2 + (1− αn)d(p, xn)
2 − td(xn, p)

2.

Letting t → 1, we have

(3.1) αn

r∑
k=1

βk
nd(xn, uk)

2 + (1− αn)d(xn, Txn)
2

≤ αn

(
r∑

k=1

βk
nd(p, uk)

2 − d(p, xn)
2

)
.

From this inequality, we obtain

0 ≤
r∑

k=1

βk
nd(p, uk)

2 − d(p, xn)
2

and thus

d(p, xn)
2 ≤

r∑
k=1

βk
nd(p, uk)

2

≤ max
k∈{1,2,...,r}

d(p, uk)
2

for every n ∈ N. It implies that {xn} is bounded. By (3.1), we also have

αn

r∑
k=1

βk
nd(xn, uk)

2 ≤ αn

(
r∑

k=1

βk
nd(p, uk)

2 − d(p, xn)
2

)

≤ αn

r∑
k=1

βk
nd(p, uk)

2.

Since αn > 0, it follows that

(3.2)

r∑
k=1

βk
nd(xn, uk)

2 ≤
r∑

k=1

βk
nd(p, uk)

2

for every n ∈ N.
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To show that {xn} is ∆-convergent to p, we take a subsequence {xni} ⊂ {xn}
arbitrarily with its asymptotic center v ∈ X, and will prove v = p. Taking a
subsequence repeatedly, we can find a subsequence {x′

j} of {xni
} such that

lim
j→∞

d(x′
j , p) = lim sup

i→∞
d(xni

, p)

and {x′
j} is ∆-convergent to some q ∈ X. We first show that q = p. Let

{α′
j} and {β′k

j } be subsequences of {αni
} and {βk

ni
} corresponding to {x′

j},
respectively. That is, since we may write x′

j = xnij
, using this subscript, we

define β′k
j = βk

nij
and α′

j = αnij
for every j ∈ N. Then, by (3.1) we have

0 ≤ (1− α′
j)d(x

′
j , Tx

′
j)

2 ≤ α′
j

(
r∑

k=1

β′k
j d(p, uk)

2 − d(p, x′
j)

2

)
.

Since α′
j → 0 as j → ∞ and {x′

j} is bounded, we have limj→∞ d(x′
j , Tx

′
j) = 0.

It follows that

lim sup
j→∞

d(x′
j , T q) ≤ lim sup

j→∞
(d(x′

j , Tx
′
j) + d(Tx′

j , T q))

≤ lim sup
j→∞

d(x′
j , Tx

′
j) + lim sup

j→∞
d(Tx′

j , T q)

≤ lim sup
j→∞

d(x′
j , q).

Since q is an asymptotic center of {x′
j}, so is Tq. From the uniqueness of the

asymptotic center of a bounded sequence, we have q = Tq, or equivalently,
q ∈ FixT . By (3.2), we have

r∑
k=1

β′k
j d(x′

j , uk)
2 ≤

r∑
k=1

β′k
j d(p, uk)

2

for every j ∈ N, and thus

lim inf
j→∞

r∑
k=1

β′k
j d(x′

j , uk)
2 ≤ lim inf

j→∞

r∑
k=1

β′k
j d(p, uk)

2

=

r∑
k=1

βkd(p, uk)
2 = g(p).
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Since q is a ∆-limit of {x′
j}, we have

g(q) =

r∑
k=1

βkd(q, uk)
2 ≤

r∑
k=1

βk lim inf
j→∞

d(x′
j , uk)

2

≤ lim inf
j→∞

r∑
k=1

βkd(x′
j , uk)

2

= lim inf
j→∞

r∑
k=1

β′k
j d(x′

j , uk)
2 ≤ g(p).

This shows that q is a minimizer of g on FixT . From its uniqueness, we obtain
q = p, that is, p is an asymptotic center of {x′

j}. From the assumptions of
{x′

j}, we have

lim sup
i→∞

d(xni , p) = lim
j→∞

d(x′
j , p)

≤ lim sup
j→∞

d(x′
j , v)

≤ lim sup
i→∞

d(xni , v).

Hence p is also an asymptotic center of {xni
} and it implies that v = p. Since

v is an asymptotic center of a subsequence {xni
} of {xn}, which is arbitrarily

chosen, and it coincides with p, we conclude that {xn} is ∆-convergent to
p = argminy∈FixT

∑r
k=1 β

kd(y, uk)
2.

We finally show the convergence of {xn} to p. Since {xn} is ∆-convergent
to p, by (3.2) we have

r∑
k=1

βkd(p, uk)
2 ≤

r∑
k=1

βk lim inf
n→∞

d(xn, uk)
2

≤ lim inf
n→∞

r∑
k=1

βk
nd(xn, uk)

2 ≤ lim sup
n→∞

r∑
k=1

βk
nd(xn, uk)

2

≤ lim sup
n→∞

r∑
k=1

βk
nd(p, uk)

2

=

r∑
k=1

βkd(p, uk)
2,

and hence

lim
n→∞

r∑
k=1

βk
nd(xn, uk)

2 =

r∑
k=1

βkd(p, uk)
2.
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Since β1, β2, . . . , βr ∈ [0, 1] and
∑r

k=1 β
k = 1, there exists k0 ∈ {1, 2, . . . , r}

such that βk0 > 0. Then, it follows that d(p, uk0
) = limn→∞ d(xn, uk0

). Indeed,
since we know

d(p, uk0
) ≤ lim inf

n→∞
d(xn, uk0

) ≤ lim sup
n→∞

d(xn, uk0
),

it is sufficient to show lim supn→∞ d(xn, uk0) ≤ d(p, uk0). We prove it by
contradiction. If it does not hold, there exists a subsequence {xnl

} ⊂ {xn}
such that lim supn→∞ d(xn, uk0

)2 = liml→∞ d(xnl
, uk0

)2 > d(p, uk0
)2. Then we

have ∑
k ̸=k0

βkd(p, uk)
2 =

r∑
k=1

βkd(p, uk)
2 − βk0d(p, uk0

)2

= lim
n→∞

r∑
k=1

βk
nd(xn, uk)

2 − βk0d(p, uk0
)2

> lim
l→∞

r∑
k=1

βk
nl
d(xnl

, uk)
2 − βk0 lim

l→∞
d(xnl

, uk0
)2

= lim
l→∞

r∑
k=1

βkd(xnl
, uk)

2 − lim
l→∞

βk0d(xnl
, uk0

)2

= lim
l→∞

∑
k ̸=k0

βkd(xnl
, uk)

2

≥
∑
k ̸=k0

lim inf
l→∞

βkd(xnl
, uk)

2

≥
∑
k ̸=k0

βkd(p, uk)
2.

It is a contradiction and thus we have lim supn→∞ d(xn, uk0
) ≤ d(p, uk0

). It
implies that limn→∞ d(xn, uk0

) = d(p, uk0
) and by Lemma 2.1, we obtain p =

limn→∞ xn, which is the desired result. □

In the end of this paper, we remark the case where the domain X of T is a
closed convex subset of a Hilbert space. Under this assumption, it follows from
the parallelogram law that

g(y) =

r∑
k=1

βk ∥y − uk∥2 =

∥∥∥∥∥y −
r∑

k=1

βkuk

∥∥∥∥∥
2

+

n∑
j=i+1

n−1∑
i=1

βiβj ∥ui − uj∥2 .

Then, putting u =
∑r

k=1 β
kuk, we have a minimizer of g on FixT is a unique

closest point to u. That is, we obtain the following result.
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Theorem 3.4. Let X be a closed convex subset of a Hilbert space and T : X →
X a nonexpansive mapping such that FixT ̸= ∅. Let u1, u2, . . . , ur be a finite
family of anchor points in X. Let {αn} ⊂ ]0, 1[ be a real sequence such that
αn → 0 as n → ∞, and for k = 1, 2, . . . , r, let {βk

n} ⊂ [0, 1] be real sequences
such that

∑r
k=1 β

k
n = 1 for every n ∈ N and βk

n → βk ∈ [0, 1] as n → ∞.
Define {xn} ⊂ X by

xn = αn

r∑
k=1

βk
nuk + (1− αn)Txn

for each n ∈ N. Then {xn} converges to PFixT

∑r
k=1 β

kuk as n → ∞, where
PFixT is a metric projection of X onto FixT .
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