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Let a finite system of mappings Si : Ci → Ci(i ∈ I := {1, 2, ..., n}), where
Ci is nonempty, closed and convex subset of H. For each i ∈ I, Si is called
nonexpansive on Ci, if

∥Six− Siy∥ ≤ ∥x− y∥ ∀x, y ∈ Ci.

Denote the fixed point set of Si by Fix(Si) := {x ∈ Ci : Six = x}.

Problem 1. Let C ⊆ Ci for all i ∈ I. The problem is to find a common
element of the solution sets of Problem V IP (C,F ) and the set of common
fixed points of a finite family of nonexpansive mappings Si(i ∈ I), that is,

Find x∗ ∈
∩
i∈I

Fix(Si) ∩ Sol(C,F ).

Now we consider the relation of Problem 1 and other problems.

1. Variational inequality problem: Let C be a nonempty, closed and con-
vex subset of H and F : C → H be a mapping. We consider the
variational inequality problem (see [22, 36]):

Find x̄ ∈ C such that ⟨F (x̄), y − x̄⟩ ≥ 0 ∀y ∈ C.

Setting Si = 0 for all i ∈ I, it is easy to see that Problem 1 coincides
with this variational inequality problem.

2. Fixed point problem: Let C be a nonempty, closed and convex subset of
H and the mappings Si : C → C(i ∈ I = {1, 2, ..., n}) be nonexpansive.
The following problem is called the fixed point problem (see [44]):

Find x̂ ∈
∩
i∈I

Fix(Si).

By choosing F = 0 and Ci = C for all i ∈ I, we can easily see that
Problem 1 is equivalent to this fixed point problem.

3. Finding a common point of the solution set of variational inequalities
and the fixed point set of nonexpansive mappings: Let C be a nonempty,
closed convex subsets of H, the mappings Si : C → C(i ∈ I =
{1, 2, ..., n}) be nonexpansive, and Fj : C → H(j ∈ J := {1, 2, ...,m}).
The problem is formulated as follows (see [16, 19, 38, 47]):

(1.1) Find x∗ ∈
∩
i∈I

Fix(Si)
∩
j∈J

Sol(C,Fj).

Taking Ci = C for all i ∈ I,m = 1 and F = F1, we can see that the
problem collapses into Problem 1.

4. Unrelated variational inequalities: For each i ∈ I = {1, 2, ..., n+1}, let
Ci be a nonempty, closed and convex subset of H such that ∩i∈ICi ̸= ∅,
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and Fi : Ci → H. Unrelated variational inequalities in the sense of
Censor et al. [17] are first stated as follows:

(1.2) Find x∗ ∈ Sol(Ci, Fi).

It is easy to see that Problem 1 is a special case of unrelated variational
inequalities in the case Fi(x) = x − Six for all x ∈ Ci, i ∈ {1, 2, ..., n}
and F = Fn+1.

Some notable methods for studying and solving Problem 1 and its special
case have been proposed such as hybrid extragradient-viscosity methods of Kim
[25] and Maingé [40] for (1.1) in the case m = n = 1, extragradient methods
of Kim et al. ([30, 27]) and Nakajo et al. [42] for (1.1) where Si(i ∈ I) are
nonexpansive semigroups, strongly convergent reflection methods of Bauschke
et al. [11] for finding the projection onto the intersection of two closed convex
sets, projection methods of Censor et al. [17] and Kim et al. [32] for V IP (C,F ),
projection methods for nonexpansive mappings and inverse-strongly monotone
mappings of Iiduka et al. [33], linesearch methods of Anh et al. [5], ergodic
iteration methods of Kim et al. [26], parallel extragradient-like projection
methods of Anh et al. [8] and others for (1.1); see [4, 6, 9, 15, 22, 31, 29].

The metric projection from H onto C is denoted by PrC and

PrC(x) := argmin{∥x− y∥ : y ∈ C}, ∀x ∈ H.

It is easy to see that a point x∗ ∈ Sol(C,F ) if and only if it is a fixed point
of the mapping T (x) := PrC(x − λF (x)), where λ > 0. Then, the simplest
iterative procedure is the well-known projected gradient method which was
given by the following [13]: {

x0 ∈ Rn,

xk+1 = T (xk).

However, in the Euclidean space H = Rn, its convergence requires either β-
strongly monotone property (i.e., ⟨F (x)−F (y), x− y⟩ ≥ β∥x− y∥2, ∀x, y ∈ C)
and L-Lipschitz continuity (i.e., ∥F (x) − F (y)∥ ≤ L∥x − y∥, ∀x, y ∈ C) on
the cost mapping F , or γ-converse strongly monotone property (i.e., ⟨F (x) −
F (y), x− y⟩ ≥ γ∥F (x)− F (y)∥2, ∀x, y ∈ C).

In order to overcome the drawbacks, in a real Hilbert space H, Malitsky [39]
proposed the projected reflected gradient algorithm with a constant stepsize
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for solving V IP (C,F ), where the iteration scheme is very simple as follows:
x0 = y0 ∈ H,

xk+1 = PrC(x
k − λF (yk)),

yk+1 = 2xk+1 − xk.

Only under monotone and L-Lipschitz continuous assumptions of the cost map-

ping F , by choosing the stepsize λ ∈ (0,
√
2−1
L ), the author showed that the

sequences {xk} and {yk} weakly converge to a solution of V IP (C,F ).
On the one hand, in 1976, Korpelevich [37] first introduced the extragradient

method for the saddle point problem and then was extended to V IP (C,F ), the
sequence {xk} is defined by

x0 ∈ Rn,

yk = T (xk),

xk+1 = PrC(x
k − λF (yk)).

Under assumptions that F is monotone, L-Lipschitz continuous and 0 < λ < 1
L ,

she showed that the sequences {xk} and {yk} converge to a same point in
Sol(C,F ). However, in the extragradient method, the sequences only converge
to a solution point of V IP (C,F ) in Rn.

In 2006, basing on the extragradient method and Mann iteration method
[41], another iterative process was proposed by Nadezhkina and Takahashi in
[43] for finding a common point of the fixed point set of a nonexpansive mapping
S and the set Sol(C,F ):

x0 ∈ H,

yk = PrC(x
k − λkF (xk)),

xk+1 = αkx
k + (1− αk)SPrC(x

k − λkF (yk)).

When {λk} ⊂ [a, b] ⊂ (0, 1
L ) and {αk} ⊂ [c, d] ⊂ (0, 1), where F is monotone

and L-Lipschitz continuous on C, they proved that the sequence {xk} con-
verges weakly to some element in Sol(C,F ) ∩ Fix(S). The method has modi-
fied and extended by Anh [2] for finding a common point of the solution set of
pseudomonotone equilibrium problems and the fixed point set of nonexpansive
mappings in a real Hilbert space. Note that, in the special case that the equi-
librium problem is a variational inequality problem, then pseudomonotonicty
of the cost bifunction is same as pseudomonotonicity of the cost mapping.

Recently, the extragradient method has been played a crucial role to get
a lot of extensions to solve Problem 1: see [7, 36, 40]. Summing up, many of
current algorithms for finding a common point of the solution set of a variational
inequality problem and the fixed point set of mappings usually requires more
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than two projections at each iteration step; see, for example [49]. Similarly
to the case of the projected reflected gradient algorithm, one could ask the
following question:

Could one use the basic projection method for solving Problem 1 such that the
method requires only one projection onto the feasible set C and only computing
values of the mappings per iteration?

In this paper we propose a solution for the above question by showing that
the basic projection method not only works well for solving variational inequal-
ities but also succeeds in solving Problem 1.

This paper, motivated the projected reflected gradient algorithm of Malit-
sky in [39] and the Mann iteration method in [41], introduces the following
one-projection scheme to solve Problem 1 for the variational inequality prob-
lem V IP (C,F ) and a finite family of nonexpansive mappings Si(i ∈ I) in
the framework of a real Hilbert space H. This scheme needs only computing
one projection of xk − αkF (xk) onto the feasible set C (as in the above) and
only n values of nonexpansive mappings Si(i ∈ I) per iteration and it has a
quite simple and elegant structure. The scheme recalls one-projection method;
however, stepsize αk = δk

γk
of a gradient is taken computational complexity

in the point PrC(x
k − αkF (xk)), where γk = max{λk, ∥F (xk)∥} under some

conditions onto parameter sequences {λk} and {δk} per each iteration k. We
emphasize here that the weak convergence of our scheme follows by continuity,
pseudomonotonicity and paramonotonicity of the cost mapping F , and it does
not require Lipschitz continuity.

2. Preliminaries

In this paper, we assume that the mapping F , each operator Si(i ∈ I),
parameter sequences {λk}, {δk} and {βk,i} satisfy the following restrictions:

(C1) If {xk} ⊂ H is bounded, then {F (xk)} is also bounded; for each fixed
point y ∈ C, the function f(x) = ⟨F (x), y − x⟩ is weakly upper semi-
continuous with respect to x [4]; pseudomonotone on C with respect
to every solution of Problem 1 and satisfies strict paramonotonicity
property that (see [49])

{x ∈ Sol(C,F ), y ∈ C, ⟨F (y), x− y⟩ = 0} ⇒ y ∈ Sol(C,F );

(C2) The mappings Si are nonexpansive on C for all i ∈ I;
(C3) Let L > λ > 0 and 0 < a < b < 1. The sequences {δk} ⊂ (0, 1), {βk,j}

and {λk} satisfy
∞∑
k=0

δk = +∞,

∞∑
k=0

δ2k < +∞, a ≤ βk,j ≤ b ∀j ∈ I, and {λk} ⊂ [λ,L];



282 JONG KYU KIM

(example as δk = 1
k+1 for all k ≥ 0);

(C4) The solution set of Problem 1 is nonempty, that is,

Ω :=
∩
i∈I

Fix(Ci, Si) ∩ Sol(C,F ) ̸= ∅.

Let F be continuous. By Kinderlehrer and Stampacchia [35] (Corollary 4.3),
if either there exists x0 ∈ C such that

⟨F (y)− F (x0), y − x0⟩
∥y − x0∥

→ 0 as ∥y∥ → ∞, y ∈ C,

or C is bounded, then Sol(C,F ) ̸= ∅.
Now the one-projection algorithm for solving Problem 1 is formally stated

as the following.

Algorithm 2.1. (One-projection algorithm)

Initialization: Choosing x0 ∈ C, and the parameter sequences {λk} and {δk}
satisfy (C3).

Iterative step: k ≥ 1,
Take γk = max{λk, ∥F (xk)∥}, αk = δk

γk

Compute yk = PrC(x
k − αkF (xk))

For each j ∈ I, compute uk
j = (1− βk,j)x

k + βk,jSjy
k

Set xk+1 = uk
jk
, where jk := argmax{∥uk

j − yk∥ : j ∈ I}.

To investigate the convergence of one-projection method, we recall the fol-
lowing technical lemmas and quasi-Fejér convergence which will be used in the
sequel.

Lemma 2.2 ([51]). Let {ak} and {bk} be sequences of nonnegative real num-
bers such that

ak+1 ≤ ak + bk ∀k ≥ 0,

where
∑∞

k=0 bk < ∞. Then, the sequence {ak} is convergent.

Lemma 2.3 ([44]). Let H be a real Hilbert space, {αk} be a sequence of real
numbers such that 0 < a ≤ αk ≤ b < 1 for all k ≥ 0, and let {vk}, {wk} be
sequences in H such that

lim sup
k→∞

∥vk∥ ≤ c, lim sup
k→∞

∥wk∥ ≤ c

and
lim
k→∞

∥αkv
k + (1− αk)w

k∥ = c.
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Then, limk→∞ ∥vk − wk∥ = 0.

It is well known that the metric projection PrC has the following properties.

Lemma 2.4 ([12]). Let C be a nonempty, closed and convex subset of H and
PrC : H → C be a metric projection on C. Then the following properties hold:

(i) ⟨x− PrC(x), y − PrC(x)⟩ ≤ 0, ∀y ∈ C, x ∈ H;
(ii) ⟨PrC(x)− PrC(y), x− y⟩ ≥ ∥PrC(x)− PrC(y)∥2, ∀x, y ∈ H;
(iii) ∥x− PrC(x)∥2 ≤ ∥x− y∥2 − ∥y − PrC(x)∥2, ∀x ∈ H, y ∈ C.

Lemma 2.5 ([46] (Opial Condition)). Let {xk} be a sequence in H such
that xk ⇀ x̄. Then, for all y ̸= x̄, we have

lim inf
k→∞

∥xk − x̄∥ < lim inf
k→∞

∥xk − y∥.

We next deal with the so called quasi-Fejér convergence and its properties:

Definition 2.6. Let S be a nonempty subset of H. A sequence {xk} in H is
said to be quasi-Fejér convergent to S if for all x∗ ∈ S, there exist k0 ≥ 0 and
a sequence {αk} ⊂ (0,∞) with

∑∞
k=0 αk < ∞ such that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + αk, ∀k ≥ k0.

This definition originates in [21] and has been used further in [20, 34].

Lemma 2.7 ([34, Theorem 4.1]). Let S be a nonempty subset of H. If {xk}
is quasi-Fejér convergent to S. Then we have the followings:

(i) The sequence {xk} is bounded;
(ii) If all weak cluster points of {xk} belong to S, then the sequence {xk}

is weakly convergent to a point of S.

3. Convergence theorems

Thefollowing lemma is important to prove the convergence theorem.

Lemma 3.1 ([28]). Let F : C → H be pseudomonotone and the conditions
(C2)− (C4) be satisfied. Then we have the following statements.

(i) The sequence {xk} generated by Algorithm 2.1 is quasi-Fejér conver-
gent to a point in Ω. More detailed as the following:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2βk,jkδ
2
k, ∀x∗ ∈ Ω.

(ii) For each x∗ ∈ Ω,

lim sup
k→∞

⟨F (xk), x∗ − xk⟩ = 0.

Now, we are in a position to indroduce the main convergence theorem.
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Theorem 3.2 ([28]). Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Suppose that conditions (C1) − (C4) are satisfied. Let {xk}
be a sequence generated by Algorithm 2.1. Then, the sequences {xk} and {yk}
converge weakly to the same point x∗ ∈ Ω.

Proof. By Lemma 2.7(i), the sequence {xk} is quasi–Fejér convergent to Ω.
Hence, by Lemma 3.1(i), the sequence {xk} is bounded and if all the weak
cluster points of {xk} belong to Ω, then the sequence {xk} converges weakly to
a point of Ω. Let x̄ be any weak cluster point of {xk}. Then, since C is weakly
closed, x̄ ∈ C and without loss of generality, we can assume that

(3.1) xkj ⇀ x̄ and lim sup
k→∞

⟨F (xk), x∗ − xk⟩ = lim
j→∞

⟨F (xkj ), x∗ − xkj ⟩,

where x∗ ∈ Ω.
It remains to prove that x̄ ∈ Ω to get that {xk} converges weakly to a point

in Ω, and from the fact that ∥xk−yk∥ ≤ δk, {yk} converges weakly to the same
point. The proof of x̄ ∈ Ω is divided into two steps (see [28]).

Step 1. Claim x̄ ∈ Sol(C,F ).

Step 2. Claim x̄ ∈ Fix(Sj) for all j ∈ I.
Now we will show that Sj(x̄) = x̄ for all j ∈ I. The proof is similar as in the

proof of ([46], Lemma 2) by using the Opial condition in Lemma 2.5. Thus
ykj ⇀ x̄ ∈ ∩j∈IFix(Sj) as j → ∞. This completes the proof. □

4. Equilibrium problems and common fixed point problems

Let C be a nonempty, closed and convex subset of a real Hilbert space H,
f : C × C → R be a bifunction such that f(x, x) = 0 for all x ∈ C (usually
called cost bifunction), and f(x, ·) be convex for each x ∈ C. The equilibrium
problem, shortly EP (C, f) [14], is formulated by: Find x∗ ∈ C such that

f(x∗, x) ≥ 0, ∀x ∈ C.

Let us denote the solution set of EP (C, f) by Sol(C, f). For each i ∈ I :=
{1, 2, ..., n}, let Si : C → C be a nonexpansive mapping.

In this section, we consider the following problem of finding a common point
of the equilibrium solution set Sol(C, f) and the fixed point set ∩i∈IFix(Si):

Problem 2. Find x∗ ∈
∩
i∈I

Fix(Si) ∩ Sol(C, f).

Methods for solving Problem 2 have been studied extensively by many re-
searchers; see [1, 3, 18, 45, 48, 50]. In the special case f(x, y) = ⟨F (x), y − x⟩
for all x, y ∈ C, where the mapping F : C → H, Problem EP (C, f) becomes
the variational inequality problem V IP (C,F ). Thus, we can say that Problem
2 is an extension formulation of Problem 1.
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Many of the existing methods for solving Problem 2 require a strict as-
sumption on the strong monotonicity or Lipschitz-type continuity of the cost
bifunction f . Here, we only assume that f is monotone and satisfies the para-
monotonicity property, and not neccesary Lipschitz-type continuous.

We recall that a bifunction f : C × C → R is called (see [5], Definition 1):

(1) strongly monotone on C with constant β > 0, if

f(x, y) + f(y, x) ≤ −β∥x− y∥2, ∀x, y ∈ C;

(2) monotone on C, if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(3) pseudomonotone on C, if

f(x, y) ≤ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(4) Lipschitz-type continuous on C, if

f(x, y) + f(y, z) ≤ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2, ∀x, y, z ∈ C.

For solving Problem 2, we assume that for each i ∈ I, Si : C → C is
nonexpansive such that

Γ :=
∩
i∈I

Fix(Si) ∩ Sol(C, f) ̸= ∅

and the bifunction f satisfies the following conditions:

(D1) If {xk} is bounded, then {wk} ⊂ ∂ϵk
2 f(xk, xk) is also bounded and f is

continuous on C × C in the sense that if x, y ∈ C, and {xk} and {yk}
are two sequences in C converging weakly to x and y, respectively, then
f(xk, yk) → f(x, y).

(D2) f is pseudomonotone on C with respect to every solution of Problem
EP (C, f) and satisfies the following condition, called strict paramono-
tonicity property:

{x ∈ Sol(C, f), y ∈ C, f(y, x) = 0} ⇒ y ∈ Sol(C, f).

Next, we propose a modification of Algorithm 2.1 for solving Problem 2.

Algorithm 4.1. (Modified parallel projection algorithm)

Initialization: Choosing x0 ∈ C, and the parameter sequences {λk} and {δk}
satisfy (C3), and {ϵk} ⊂ (0,∞) such that

∞∑
k=0

δkϵk < ∞.
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Iterative step: k ≥ 1,
Take wk ∈ ∂ϵk

2 f(xk, xk), γk = max{λk, ∥wk∥}, αk = δk
γk
;

Compute yk = PrC(x
k − αkw

k);

For each j ∈ I, compute uk
j = (1− βk,j)x

k + βk,jSjy
k;

Set xk+1 = uk
jk
, where jk := argmax{∥uk

j − yk∥ : j ∈ I}.

Note that for each ϵ > 0, x ∈ C, ∂ϵ
2f(x, y) stands for ϵ-subdifferential of the

convex function f(x, ·) at y ∈ C i.e.,

∂ϵ
2f(x, y) := {wy ∈ H : f(x, z)− f(x, y) ≥ ⟨wy, z − y⟩ − ϵ ∀z ∈ C}.

When f(x, y) = ⟨F (x), y − x⟩ for every x, y ∈ C, Problem EP (C, f) becomes
the variational inequality problem V IP (C,F ). In that case, we can choose
wk = F (xk) and Algorithm 4.1 can be written as Algorithm 2.1.

Now we need the following lemma for the main theorem.

Lemma 4.2 ([28]). Let f : C×C → R be pseudomonotone and the conditions
(C3) be satisfied. Then, we have the following statements.

(i) The sequence {xk} generated by Algorithm 4.1 is quasi-Fejér convergent
to Γ and the following inequality holds:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2

λ
βk,jkδkϵk + 2βk,jkδ

2
k, ∀x∗ ∈ Γ.

(ii) For each x∗ ∈ Γ,

lim sup
k→∞

f(xk, x∗) = 0.

Theorem 4.3 ([28]). Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Suppose that cnditions (C3) and (D1) − (D2) are satisfied.
Then, the sequences {xk} and {yk} generated by Algorithm 4.1 converge weakly
to the same point x̄ ∈ Γ.

Proof. By the similarly method as Theorem 3.2, we assume that for each
{xkj} ⊂ {xk} and

(4.1) xkj ⇀ x̄ and lim sup
k→∞

f(xk, x∗) = lim
j→∞

f(xkj , x∗).

If x̄ ∈ Γ, then by Lemma 2.7(ii) that the sequence {xk} converges weakly
to a solution x̄ ∈ Γ and hence {yk} also converges weakly to x̄ ∈ Γ.

From condition (D1), (4.1) and Lemma 4.2(ii), we have

f(x̄, x∗) = 0
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Combining this and the pseudomonotonicity of f

f(x∗, x̄) ≥ 0 ⇒ f(x̄, x∗) ≤ 0,

it implies that

f(x̄, x∗) = 0.

Since f is pseudomonotone on C with respect to every solution of Problem 2 and
satisfies strict paramonotonicity in condition (D1), we obtain x̄ ∈ Sol(C, f).

By similar arguments as in Step 2 of Theorem 3.2, we also have x̄ ∈ Fix(Sj)
for all j ∈ I. Consequently, the sequences {xk} and {yk} generated by Algo-
rithm 4.1 converge weakly to the same point x̄ ∈ Γ. □
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