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PROJECTION METHODS FOR THE VARIATIONAL
INEQUALITIES WITH UNRELATED NONEXPANSIVE
MAPPINGS IN HILBERT SPACES

JONG KYU KIM

ABSTRACT. In this paper, we introduce new iteration methods for finding
a common point of the solution set of a class of pseudomonotone varia-
tional inequalities and the fixed point set of a finite system of unrelated
nonexpansive mappings in a real Hilbert space. The main iteration step in
the proposed methods computes only one projection and does not require
any Lipschitz continuity for the cost mapping.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H with
inner product (-, -) and norm |-||. By #¥ — # (resp. ¥ — Z), we denote strong
(resp. weak) convergence of the sequence {z*} to z.

A mapping F': C' — H, usually called a cost mapping, is said to be

(1) monotone on C, if
(F(z) = F(y),z —y) 20 Vo,y € C;
(2) pseudomonotone on C, if
(F(y),x—y) 2 0= (F(z),x —y) 20 Yo,y € C;
(3) Lipschitz continuous on C' with constant L > 0, if
1F(z) = F(y)|| < Ll —yl| Va,y € C.
A wvariational inequality problem, shortly VIP(C, F), is to find a point in
Sol(C,F)={a*e€C: (F(z"),x —a*) >0 Vz e C}.
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Let a finite system of mappings S; : C; — C;(i € I := {1,2,...,n}), where
C}; is nonempty, closed and convex subset of H. For each ¢ € I, S; is called
nonexpansive on Cjy, if

[Siz = Siyll < [le —yll Yo,y € C;.

Denote the fixed point set of S; by Fiz(S;) :={x € C; : S;x = x}.

Problem 1. Let C C C; for all i € I. The problem is to find a common
element of the solution sets of Problem VIP(C,F) and the set of common
fixed points of a finite family of nonexpansive mappings S;(i € I), that is,

Find 2* € (1) Fixz(S;) N Sol(C, F).
i€l

Now we consider the relation of Problem 1 and other problems.

(1.1)

1. Variational inequality problem: Let C be a nonempty, closed and con-

vex subset of H and F' : C — H be a mapping. We consider the
variational inequality problem (see [22, 36]):

Find z € C such that (F(zZ),y —z) >0 Yy e C.

Setting S; = 0 for all ¢ € I, it is easy to see that Problem 1 coincides
with this variational inequality problem.

. Fized point problem: Let C be a nonempty, closed and convex subset of

H and the mappings S; : C — C(i € I = {1,2,...,n}) be nonexpansive.
The following problem is called the fixed point problem (see [44]):
Find & € ()| Fiz(S5)).
iel
By choosing F' = 0 and C; = C for all i € I, we can easily see that
Problem 1 is equivalent to this fixed point problem.

. Finding a common point of the solution set of variational inequalities

and the fized point set of nonexpansive mappings: Let C be a nonempty,
closed convex subsets of H, the mappings S; : C — C(i € I =
{1,2,...,n}) be nonexpansive, and F; : C — H(j € J :={1,2,...,m}).
The problem is formulated as follows (see [16, 19, 38, 47]):

Find 2* € (1) Fiz(S;) (] Sol(C, Fj).
iel jeJ
Taking C; = C for all i € I,m = 1 and F = Fj, we can see that the
problem collapses into Problem 1.

. Unrelated variational inequalities: For each i € I = {1,2,...,n+ 1}, let

C; be a nonempty, closed and convex subset of H such that N;c;C; # 0,
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and F; : C; — H. Unrelated variational inequalities in the sense of
Censor et al. [17] are first stated as follows:

(1.2) Find z* € Sol(C;, Fy).

It is easy to see that Problem 1 is a special case of unrelated variational
inequalities in the case F;(x) = x — S;zx for all z € C;,i € {1,2,...,n}
and F = Fn+1~

Some notable methods for studying and solving Problem 1 and its special
case have been proposed such as hybrid extragradient-viscosity methods of Kim
[25] and Maingé [40] for (1.1) in the case m = n = 1, extragradient methods
of Kim et al. ([30, 27]) and Nakajo et al. [42] for (1.1) where S;(i € I) are
nonexpansive semigroups, strongly convergent reflection methods of Bauschke
et al. [11] for finding the projection onto the intersection of two closed convex
sets, projection methods of Censor et al. [17] and Kim et al. [32] for VIP(C, F),
projection methods for nonexpansive mappings and inverse-strongly monotone
mappings of Tiduka et al. [33], linesearch methods of Anh et al. [5], ergodic
iteration methods of Kim et al. [26], parallel extragradient-like projection
methods of Anh et al. [8] and others for (1.1); see [4, 6, 9, 15, 22, 31, 29].

The metric projection from H onto C' is denoted by Pr¢ and
Pre(z) := argmin{||lz —y|| : y € C}, Ve e H.

It is easy to see that a point x* € Sol(C, F) if and only if it is a fixed point
of the mapping T'(z) := Pro(x — AF(z)), where A > 0. Then, the simplest
iterative procedure is the well-known projected gradient method which was

given by the following [13]:
20 e R,
oF = T(z%).

However, in the Euclidean space H = R", its convergence requires either f-
strongly monotone property (i.e., (F(x) — F(y),x —y) > B|lz —y||?, Yo,y € C)
and L-Lipschitz continuity (i.e., |F(z) — F(y)|| < L|lz — y||, Vz,y € C) on
the cost mapping F, or y-converse strongly monotone property (i.e., (F(x) —
F(y),z —y) 2| F(z) = F(y)|?, Va,y € C).

In order to overcome the drawbacks, in a real Hilbert space H, Malitsky [39]
proposed the projected reflected gradient algorithm with a constant stepsize
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for solving VIP(C, F), where the iteration scheme is very simple as follows:

2V =9% e H,
P = Pro(af — AF(y%)),
yhHl = 9gktl _ gk

Only under monotone and L-Lipschitz continuous assumptions of the cost map-
ping F, by choosing the stepsize A € (0, ‘/%1), the author showed that the
sequences {z*} and {y*} weakly converge to a solution of VIP(C, F).

On the one hand, in 1976, Korpelevich [37] first introduced the extragradient
method for the saddle point problem and then was extended to VIP(C, F'), the

sequence {z*} is defined by
20 e R,
y*=T(a"),
oF 1 = Pro(a? — AF(yF)).

Under assumptions that F'is monotone, L-Lipschitz continuous and 0 < A\ < %,
she showed that the sequences {z*} and {y*} converge to a same point in
Sol(C, F). However, in the extragradient method, the sequences only converge
to a solution point of VIP(C,F) in R™.

In 2006, basing on the extragradient method and Mann iteration method
[41], another iterative process was proposed by Nadezhkina and Takahashi in
[43] for finding a common point of the fixed point set of a nonexpansive mapping
S and the set Sol(C, F):

20 e H,

y* = Pro(af — A\ F(29)),

2P =k + (1 — ag)SPre(xf — M F(y)).
When {\,} C [a,b] C (0,1) and {ax} C [c,d] C (0,1), where F is monotone
and L-Lipschitz continuous on C, they proved that the sequence {xk} con-
verges weakly to some element in Sol(C, F) N Fiz(S). The method has modi-
fied and extended by Anh [2] for finding a common point of the solution set of
pseudomonotone equilibrium problems and the fixed point set of nonexpansive
mappings in a real Hilbert space. Note that, in the special case that the equi-
librium problem is a variational inequality problem, then pseudomonotonicty
of the cost bifunction is same as pseudomonotonicity of the cost mapping.

Recently, the extragradient method has been played a crucial role to get

a lot of extensions to solve Problem 1: see [7, 36, 40]. Summing up, many of
current algorithms for finding a common point of the solution set of a variational
inequality problem and the fixed point set of mappings usually requires more
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than two projections at each iteration step; see, for example [49]. Similarly
to the case of the projected reflected gradient algorithm, one could ask the
following question:

Could one use the basic projection method for solving Problem 1 such that the
method requires only one projection onto the feasible set C' and only computing
values of the mappings per iteration?

In this paper we propose a solution for the above question by showing that
the basic projection method not only works well for solving variational inequal-
ities but also succeeds in solving Problem 1.

This paper, motivated the projected reflected gradient algorithm of Malit-
sky in [39] and the Mann iteration method in [41], introduces the following
one-projection scheme to solve Problem 1 for the variational inequality prob-
lem VIP(C,F) and a finite family of nonexpansive mappings S;(i € I) in
the framework of a real Hilbert space H. This scheme needs only computing
one projection of ¥ — o F(2¥) onto the feasible set C' (as in the above) and
only n values of nonexpansive mappings S;(i € I) per iteration and it has a
quite simple and elegant structure. The scheme recalls one-projection method,
however, stepsize aj = i—’; of a gradient is taken computational complexity
in the point Pro(z% — apF(z%)), where v = max{\, |[F(z*)||} under some
conditions onto parameter sequences {\;} and {d;} per each iteration k. We
emphasize here that the weak convergence of our scheme follows by continuity,
pseudomonotonicity and paramonotonicity of the cost mapping F', and it does
not require Lipschitz continuity.

2. PRELIMINARIES

In this paper, we assume that the mapping F, each operator S;(i € I),
parameter sequences {A;}, {0x} and {8k ;} satisfy the following restrictions:
(Cy) If {*} C H is bounded, then {F(z*)} is also bounded; for each fixed
point y € C, the function f(z) = (F(x),y — x) is weakly upper semi-
continuous with respect to z [4]; pseudomonotone on C with respect
to every solution of Problem 1 and satisfies strict paramonotonicity
property that (see [49])

{1z € Sol(C, ),y € C, (F(y),z — y) = 0} = y € Sol(C, F);
(C2) The mappings S; are nonexpansive on C for all i € I;

(C3) Let L>X>0and 0<a<b< 1. The sequences {6} C (0,1),{fk,;}
and {\} satisfy

D 0k =400, 0 < +00,a < iy <b Vi€, and {\} C [N LJ;
k=0 k=0
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(example as § = k%rl for all k > 0);

(Cy4) The solution set of Problem 1 is nonempty, that is,
Q=) Fiz(C;, 8;) N Sol(C, F) # 0.
iel
Let F be continuous. By Kinderlehrer and Stampacchia [35] (Corollary 4.3),
if either there exists #° € C such that
(Ply) - Fa0),y - 2°)
ly — 29

or C' is bounded, then Sol(C, F) # 0.

Now the one-projection algorithm for solving Problem 1 is formally stated
as the following.

=0 as [yl = oo,y € C.

Algorithm 2.1. (One-projection algorithm)

Initialization: Choosing 2° € C, and the parameter sequences {\y} and {5y}
satisfy (Cs).

Iterative step: k> 1,

Take v, = max{\, |F(z")||}, cs = ‘LZ
Compute y* = Prc(z¥ — apF(2¥))
For each j € I, compute uf = (1 — By j)a* + Br. ;"

k+1 _ ok
Set x =uj,,

where ji := argmax{”ué‘? —yF|: jer}
To investigate the convergence of one-projection method, we recall the fol-
lowing technical lemmas and quasi-Fejér convergence which will be used in the

sequel.

Lemma 2.2 ([51]). Let {ax} and {bi} be sequences of nonnegative real num-
bers such that

ap+1 < ap +bi VE>0,
where Y p o by < 0o. Then, the sequence {ay} is convergent.

Lemma 2.3 ([44]). Let H be a real Hilbert space, {ay} be a sequence of real
numbers such that 0 < a < oy, < b < 1 for all k > 0, and let {v*}, {w*} be
sequences in H such that
limsup |[o*]| < ¢, limsup ||w®| < ¢
k— o0 k— o0

and

lim [|ago® + (1 — ap)w”|| = c.

k—r o0
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Then, limy,_ ., ||v* — wk|| = 0.
It is well known that the metric projection Prc has the following properties.

Lemma 2.4 ([12]). Let C be a nonempty, closed and convex subset of H and
Pre : H — C be a metric projection on C'. Then the following properties hold:

(1) <x7PrC(‘T)7y7PrC($)> S Oa vy S Oax S H;
(i) (Pro(z) — Pre(y),x —y) > |[|Pro(z) — Pre(y)|?, Vao,y € H;
(it) [z — Pro(@)|® <z —yl* = lly — Pre(2)|?, VzeH,yeC.

Lemma 2.5 ([46] (Opial Condition)). Let {x*} be a sequence in H such
that % — . Then, for all y # &, we have
liminf |2* — Z|| < liminf ||z* — y||.
k—o0 k—o0
We next deal with the so called quasi-Fejér convergence and its properties:

Definition 2.6. Let S be a nonempty subset of H. A sequence {x*} in H is
said to be quasi-Fejér convergent to S if for all * € S, there exist kg > 0 and
a sequence {ax} C (0,00) with >y, ax < 0o such that

25T —2*||? < ||l2* — 2*|® + ag, Yk > ko.
This definition originates in [21] and has been used further in [20, 34].

Lemma 2.7 ([34, Theorem 4.1]). Let S be a nonempty subset of H. If {z*}
s quasi-Fejér convergent to S. Then we have the followings:
(i) The sequence {x*} is bounded;
(ii) If all weak cluster points of {x*} belong to S, then the sequence {x*}
is weakly convergent to a point of S.

3. CONVERGENCE THEOREMS

Thefollowing lemma is important to prove the convergence theorem.

Lemma 3.1 ([28]). Let F' : C — H be pseudomonotone and the conditions
(C) — (C4) be satisfied. Then we have the following statements.

(i) The sequence {x*} generated by Algorithm 2.1 is quasi-Fejér conver-
gent to a point in . More detailed as the following:

lz* = 2*|* < la® — a*|| + 281,07, V2" € Q.
(ii) For each z* € Q,
limsup(F ("), z* — 2*) = 0.

k—o0

Now, we are in a position to indroduce the main convergence theorem.
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Theorem 3.2 ([28]). Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Suppose that conditions (C1) — (Cy) are satisfied. Let {x*}
be a sequence generated by Algorithm 2.1. Then, the sequences {x*} and {y*}
converge weakly to the same point x* € Q).

Proof. By Lemma 2.7(i), the sequence {z*} is quasi-Fejér convergent to (.

Hence, by Lemma 3.1(i), the sequence {x*} is bounded and if all the weak

cluster points of {x*} belong to 2, then the sequence {z*} converges weakly to

a point of 2. Let # be any weak cluster point of {z*}. Then, since C is weakly

closed, * € C' and without loss of generality, we can assume that

(3.1) 2Fi <z and limsup(F(z*), z* — 2%) = lim (F(2"), z* — 2M),
k—oco J—00

where z* € ().

It remains to prove that Z € €2 to get that {z*} converges weakly to a point
in 2, and from the fact that ||z¥ —y*| < i, {y*} converges weakly to the same
point. The proof of Z € 2 is divided into two steps (see [28]).

Step 1. Claim = € Sol(C, F).
Step 2. Claim z € Fiz(S;) for all j € I.

Now we will show that S;(z) = z for all j € I. The proof is similar as in the
proof of ([46], Lemma 2) by using the Opial condition in Lemma 2.5. Thus
y* — 7 € NjerFiz(S;) as j — oo. This completes the proof. O

4. EQUILIBRIUM PROBLEMS AND COMMON FIXED POINT PROBLEMS

Let C be a nonempty, closed and convex subset of a real Hilbert space H,
f:C xC — R be a bifunction such that f(x,2z) = 0 for all z € C (usually
called cost bifunction), and f(x,-) be convex for each z € C. The equilibrium
problem, shortly EP(C, f) [14], is formulated by: Find z* € C such that

flz*,2) >0, VxeC.
Let us denote the solution set of EP(C, f) by Sol(C, f). For each i € I :=
{1,2,...,n}, let S; : C — C be a nonexpansive mapping.
In this section, we consider the following problem of finding a common point
of the equilibrium solution set Sol(C, f) and the fixed point set N;er Fiz(S;):

Problem 2. Find z* € () Fiz(S;) N Sol(C, f).
iel
Methods for solving Problem 2 have been studied extensively by many re-
searchers; see [1, 3, 18, 45, 48, 50]. In the special case f(z,y) = (F(x),y — )
for all z,y € C, where the mapping F : C — H, Problem EP(C, f) becomes
the variational inequality problem VIP(C, F'). Thus, we can say that Problem
2 is an extension formulation of Problem 1.
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Many of the existing methods for solving Problem 2 require a strict as-
sumption on the strong monotonicity or Lipschitz-type continuity of the cost
bifunction f. Here, we only assume that f is monotone and satisfies the para-
monotonicity property, and not neccesary Lipschitz-type continuous.

We recall that a bifunction f: C x C' — R is called (see [5], Definition 1):

(1) strongly monotone on C with constant 8 > 0, if
fy)+ [y @) < =Blle =y, Yo,y eC;
(2) monotone on C, if
fl@,y) + fly,2) <0, Vo,yeC;
(3) pseudomonotone on C, if
flz,y) <0= f(y,z) <0, Va,y € C;
(4) Lipschitz-type continuous on C, if

f(xvy) +f(yvz) < f(sz) 761‘|$7y||2 762Hy7’2’/”23 vxayaz eC.

For solving Problem 2, we assume that for each ¢ € I, S; : C — C is
nonexpansive such that

I = (1) Fiz(S;) N Sol(C, f) # 0
iel
and the bifunction f satisfies the following conditions:
(D1) If {z*} is bounded, then {w*} C 95" f(x*, x*) is also bounded and f is

continuous on C' x C' in the sense that if x,y € C, and {z*} and {y*}
are two sequences in C' converging weakly to x and y, respectively, then

F@@®,y%) = f(z,y).

(D2) f is pseudomonotone on C with respect to every solution of Problem
EP(C, f) and satisfies the following condition, called strict paramono-
tonicity property:

{z € Sol(C, f),y € C, f(y,x) = 0} =y € Sol(C, f).
Next, we propose a modification of Algorithm 2.1 for solving Problem 2.

Algorithm 4.1. (Modified parallel projection algorithm)

Initialization: Choosing 2° € C, and the parameter sequences {\,} and {4}

satisfy (Cs), and {ex} C (0,00) such that > dpex < co.
k=0
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Iterative step: k> 1,

Take w" € 05° f (2%, &),y = masx{u, [lw® [}, ar, = 2
Compute y* = Pro(aF — apw®);
For each j € I, compute u§ = (1= Brj)x" + Br;S;y*;

Set zk+1 = ufk, where ji := argmax{”u? —y*||: jeT}.

Note that for each € > 0,2 € C, 95f(x,y) stands for e-subdifferential of the
convex function f(z,-) at y € C i.e.,
8§f($,y) = {wy eH: f(]),Z) - f(a?,y) 2 <wya2_ y> —€ Vz e C}

When f(z,y) = (F(z),y — x) for every z,y € C, Problem EP(C, f) becomes
the variational inequality problem VIP(C,F'). In that case, we can choose
w* = F(z*) and Algorithm 4.1 can be written as Algorithm 2.1.

Now we need the following lemma for the main theorem.

Lemma 4.2 ([28]). Let f : CxC — R be pseudomonotone and the conditions
(C3) be satisfied. Then, we have the following statements.

(i) The sequence {x*} generated by Algorithm 4.1 is quasi-Fejér convergent
to I' and the following inequality holds:

. cs 2 .
Hmk-‘rl —x ”2 < ka o ”2 + Xﬁk,jkékek + 25,@’]-)65]%, Va* el
(ii) For each z* €T,

limsup f(z",2*) = 0.
k—oo
Theorem 4.3 ([28]). Let C be a nonempty, closed and convex subset of a real
Hilbert space H. Suppose that cnditions (Cs) and (D1) — (D2) are satisfied.
Then, the sequences {x*} and {y*} generated by Algorithm 4.1 converge weakly
to the same point T € I.

Proof. By the similarly method as Theorem 3.2, we assume that for each
{xki}  {z*} and
(4.1) M —~ % and limsup f(z*, z*) = lim f(z", z*).

k— 00 J—roo

If 7 € T, then by Lemma 2.7(ii) that the sequence {x*} converges weakly
to a solution # € T' and hence {y*} also converges weakly to z € T.
From condition (D;), (4.1) and Lemma 4.2(ii), we have

f@,z*)=0



PROJECTION METHODS FOR THE VARIATIONAL INEQUALITIES 287

Combining this and the pseudomonotonicity of f
fl@*,z) > 0= f(z,2") <0,

it implies that
f(@,x*) =0.
Since f is pseudomonotone on C with respect to every solution of Problem 2 and
satisfies strict paramonotonicity in condition (D;), we obtain Z € Sol(C, f).
By similar arguments as in Step 2 of Theorem 3.2, we also have Z € Fiz(S;)
for all j € I. Consequently, the sequences {z*} and {y*} generated by Algo-
rithm 4.1 converge weakly to the same point z € T'. 0
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