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for every x ∈ X and n ∈ N. For a given point x1 ∈ X, let {xn} be a sequence
in X generated by

xn+1 = βnxn ⊕ (1− βn)Unxn

for every n ∈ N. Then {xn} ∆-converges to a point in F .

Theorem 1.2 (Hasegawa-Kimura [5]). Let X be a complete CAT(0) space.
Let T k be a nonexpansive mapping from X to X for every k = 1, 2, . . . , N

such that F =
⋂N

k=1 F (T k) ̸= ∅. For a given real number a ∈
]
0, 1

2

]
, let

{βn} ⊂ ]0, 1[,
{
αk
n

}
⊂ [a, 1− a] for every k = 1, 2, . . . , N and n ∈ N such that

limn→∞ βn = 0,
∑∞

n=1 βn = ∞,
∑∞

n=1 |βn+1 − βn| < ∞,
∑N

k=1 α
k
n = 1 and∑∞

n=1

∑N
k=1

∣∣αk
n+1 − αk

n

∣∣ < ∞. Define a mapping Un from X to X by

Unx = argmin
y∈X

N∑
k=1

αk
nd(T

kx, y)2

for every x ∈ X and n ∈ N. For given points u, x1 ∈ X, let {xn} be a sequence
in X generated by

xn+1 = βnu⊕ (1− βn)Unxn

for every n ∈ N. Then {xn} converges to PFu.

In this paper, the authors prove two theorems based on Theorems 1.1 and
1.2 with the resolvent of a convex function in a complete CAT(0) space.

2. Preliminaries

Let X be a metric space and let {xn} be a sequence in X. An element z ∈ X
is said to be an asymptotic center of {xn} ⊂ X if

lim sup
n→∞

d(xn, z) = inf
x∈X

lim sup
n→∞

d(xn, x)

Moreover, we say {xn} ∆-converges to a ∆-limit z if z is the unique asymptotic
center of any subsequences of {xn}. For x, y ∈ X, a mapping c : [0, l] → X is
called a geodesic if c satisfies

c(0) = x, c(l) = y, and d(c(u), c(v)) = |u− v|
for every u, v ∈ [0, l]. If a geodesic exists for every x, y ∈ X, then we call X a
geodesic space. Moreover, if a geodesic exists uniquely for every x, y ∈ X, then
we call X a uniquely geodesic space.

Let X be a uniquely geodesic space. An image [x, y] of c is called a geodesic
segment joining x and y. For a triangle △(x, y, z) ⊂ X, a comparison triangle
△(x̄, ȳ, z̄) in the Euclidean plane R2 is defined as a triangle such that each
corresponding edge has the same length as that of the original triangle. If
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for every x, y, z ∈ X, every p, q ∈ △(x, y, z) and their corresponding points
p̄, q̄ ∈ △(x̄, ȳ, z̄) satisfy that

d(p, q) ≤ ∥p̄− q̄∥ ,

X is called a CAT(0) space.
Let X be a CAT(0) space. For every x, y ∈ X with α ∈ [0, 1], if z ∈ [x, y]

satisfies that d(y, z) = αd(x, y) and d(x, z) = (1− α)d(x, y), then we denote z
by z = αx⊕ (1− α)y.

Let X be a CAT(0) space and let T be a mapping from X to X such
that the set F (T ) = {z ∈ X : z = Tz} of fixed points of T is not empty.
If d(Tx, Ty) ≤ d(x, y) for every x, y ∈ X, then we call T a nonexpansive
mapping. Let X be a complete CAT(0) space and let C be a nonempty closed
convex subset of X. Then for every x ∈ X, there exists a unique point x0 ∈ C
satisfying

d(x, x0) = inf
y∈C

d(x, y).

We define the metric projection PC fromX onto C by PCx = x0. We know that
the metric projection PC is a nonexpansive mapping such that F (PC) = C.

Let X be a complete CAT(0) space. Let f be a proper lower semicontinuous
convex function from X into ]−∞,∞]. For λ > 0, the resolvent Rλf of λf is
defined by

Rλfx = argmin
y∈X

{λf(y) + d(y, x)2}

for all x ∈ X [6, 9]. We know that Rλf is a single-valued mapping from
X to X. We also know that the resolvent Rλf is nonexpansive such that
F (Rλf ) = argminx∈X f .

LetX be a complete CAT(0) space. Let T k be a nonexpansive mapping from
X to X for every k = 1, 2, . . . , N . Let {αk} ⊂ ]0, 1[ for every k = 1, 2, . . . , N

such that
∑N

k=1 α
k = 1. Hasegawa and Kimura [4] define a balanced mapping

U from X to X by

Ux = argmin
y∈X

N∑
k=1

d(T kx, y)2

for every x ∈ X. They find that this mapping U is defined as a single-valued

mapping, has nonexpansiveness and F (U) =
⋂N

k=1 F (T k). We introduce some
lemmas used for our results.

Lemma 2.1. (Hasegawa-Kimura [4]) Let X be a complete CAT(0) space. Let
T k be a nonexpansive mapping from X to X for every k = 1, 2, . . . , N . Let

{αk} ⊂ ]0, 1[ for every k = 1, 2, . . . , N such that
∑N

k=1 α
k = 1. Define a
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balanced mapping U : X → X by Ux = argminy∈X

∑N
k=1 α

kd(T kx, y)2 for
every x ∈ X. Then we have

N∑
k=1

αkd(T kx, Ux)2 ≤
N∑

k=1

αkd(T kx, Uy)2 −
N∑

k=1

αkd(Uy,Ux)2

for every x, y ∈ X.

Lemma 2.2 (Hasegawa-Kimura [5]). Let X be a complete CAT(0) space. Let
U be a nonexpansive mapping from X to X. Suppose {xn} ⊂ X is ∆-convergent
to x0 ∈ X and {d(xn, Uxn)} is convergent to 0. Then x0 ∈ F (U).

Lemma 2.3 (Kimura-Kohsaka [7]). Let X be a complete CAT(0) space. Let f
be a proper lower semicontinuous convex function from X into ]−∞,∞]. Let
λ, µ > 0, and Rλf , Rµf be the resolvent of λf, µf . Then we have

(λ+ µ)d(Rλfx,Rµfx)
2 + µd(Rλfx, x)

2 + λd(Rµfx, x)
2

≤ λd(Rλfx, x)
2 + µd(Rµfx, x)

2

for every x ∈ X.

Lemma 2.4 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {sn}, {un} ⊂ ]0,∞[,
{tn} ⊂ R and {αn} ⊂ [0, 1] such that

∑∞
n=1 αn = ∞,

∑∞
n=1 un < ∞ and

lim supn→∞ tn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αntn + un

for all n ∈ N. Then limn→∞ sn = 0.

3. Main results

Theorem 3.1. Let X be a complete CAT(0) space. Let fk be a proper lower
semicontinuous convex function from X into ]−∞,∞] for every k = 1, 2, . . . , N

such that F =
⋂N

k=1 argminX fk ̸= ∅. For a given real number a ∈
]
0, 1

2

]
, let{

αk
n

}
, {βn} ⊂ [a, 1− a] and

{
λk
n

}
⊂ [a,∞[ for every k = 1, 2, . . . , N and

n ∈ N such that
∑N

k=1 α
k
n = 1. Let Rλk

nf
k be the resolvent of λk

nf
k for every

k = 1, 2, . . . , N and n ∈ N. Define Un be a mapping from X to X by

Unx = argmin
y∈X

N∑
k=1

αk
nd
(
Rλk

nf
kx, y

)2
for every x ∈ X and n ∈ N. For a given point x1 ∈ X, let {xn} be a sequence
in X generated by

xn+1 = βnxn ⊕ (1− βn)Unxn

for every n ∈ N. Then {xn} ∆-converges to a point in F .
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Proof. Let z ∈ F . Then we have

d(xn+1, z)
2 = d(βnxn ⊕ (1− βn)Unxn, z)

2

≤ βnd(xn, z)
2 + (1− βn)d(Unxn, z)

2 − βn(1− βn)d(Unxn, xn)
2

≤ d(xn, z)
2 − βn(1− βn)d(Unxn, xn)

2

≤ d(xn, z)
2.

Thus, we obtain d(xn+1, z) ≤ d(xn, z) for all n ∈ N and there exists

D = lim
n→∞

d(xn, z) ≤ d(x1, z).

Since 0 < a2 ≤ βn(1− βn), we have limn→∞ d(Unxn, xn) = 0. From bounded-
ness of {xn}, it follows that

lim
n→∞

d(xn, z) ≤ lim
n→∞

(d(xn, Unxn) + d(Unxn, z))

= lim
n→∞

d(Unxn, z)

= lim
n→∞

d(Unxn, Unz)

≤ lim
n→∞

d(xn, z).

Thus we get limn→∞ d(xn, z) = limn→∞ d(Unxn, z) = D. By Lemma 2.1,

N∑
k=1

αk
nd
(
Rλk

nf
kxn, Unxn

)2 ≤
N∑

k=1

αk
nd
(
Rλk

nf
kxn, z

)2 − d(z, Unxn)
2

≤
N∑

k=1

αk
nd(xn, z)

2 − d(z, Unxn)
2

= d(xn, z)
2 − d(z, Unxn)

2.

Since 0 < a ≤ αk
n, we obtain limn→∞ d(Rλk

nf
kxn, Unxn) = 0 for every

k = 1, 2, . . . , N . Since limn→∞ d(Unxn, xn) = 0, we also get
limn→∞ d(Rλk

nf
kxn, xn) = 0 for every k = 1, 2, . . . , N . Since {xn} is bounded,

there exists a subsequence {xnr} of {xn} which ∆-converges to a point x0 ∈ X.
Assume x0 ̸∈ argminX f1. Then we get

lim sup
r→∞

d (xnr
, x0) < lim sup

r→∞
d
(
xnr

, Rλ1
nf

1x0

)
≤ lim sup

r→∞

(
d
(
xnr

, Rλ1
nf

1xnr

)
+ d

(
Rλ1

nf
1xnr

, Rλ1
nf

1x0

))
≤ lim sup

r→∞
d (xnr

, x0) .

We obtain a contradiction and x0 ∈ argminX f1. Similarly, we can show x0 ∈
argminX fk for all k = 1, 2, . . . , N . Suppose that there are two subsequences
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{ui} and {vi} of {xn} which ∆-converges to u0 and v0, respectively. Then we

obtain that u0, v0 ∈
⋂N

k=1 argminX fk and both {d(xn, u0)} and {d(xn, v0)}
have limits. Assume that u0 ̸= v0, then we obtain

lim
n→∞

d(xn, u0) = lim
i→∞

d(ui, u0)

< lim
i→∞

d(ui, v0)

= lim
n→∞

d(xn, v0)

= lim
i→∞

d(vi, v0)

< lim
i→∞

d(vi, u0)

= lim
n→∞

d(xn, u0)

It is a contradiction and thus u0 = v0. Hence we obtain {xn} ∆-converges to
x0 ∈ F . □

Theorem 3.2. Let X be a complete CAT(0) space. Let fk be a proper lower
semicontinuous convex function from X into ]−∞,∞] for every k = 1, 2, . . . , N

such that F =
⋂N

k=1 argminX fk ̸= ∅. For a given real number a ∈
]
0, 1

2

]
, let

{βn} ⊂ ]0, 1[,
{
αk
n

}
⊂ [a, 1− a] and

{
λk
n

}
⊂ [a,∞[ for every k = 1, 2, . . . , N

and n ∈ N such that limn→∞ βn = 0,
∑∞

n=1 βn = ∞,
∑∞

n=1 |βn+1 − βn| < ∞,∑N
k=1 α

k
n = 1,

∑∞
n=1

∑N
k=1

∣∣αk
n+1 − αk

n

∣∣ < ∞ and
∑∞

n=1

∑N
k=1

∣∣λk
n+1 − λk

n

∣∣ <
∞. Let Rλk

nf
k be the resolvent of λk

nf
k for every k = 1, 2, . . . , N and n ∈ N.

Define Un be a mapping from X to X by

Unx = argmin
y∈X

N∑
k=1

αk
nd
(
Rλk

nf
kx, y

)2
for every x ∈ X and n ∈ N. For given points u, x1 ∈ X, let {xn} be a sequence
in X generated by

xn+1 = βnu⊕ (1− βn)Unxn

for every n ∈ N. Then {xn} converges to PFu.

Proof. We show boundedness of {xn} and {Unxn}. Let z ∈ F . Then we have

d(xn+1, z) = d(βnu⊕ (1− βn)Unxn, z)

≤ βnd(u, z) + (1− βn)d(Unxn, z)

≤ βnd(u, z) + (1− βn)d(xn, z)

≤ max{d(u, z), d(xn, z)}
≤ max{d(u, z), d(x1, z)}.
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Thus we obtain {xn} and {Unxn} are bounded. We also have

d(xn+2, xn+1) ≤ d(βn+1u⊕ (1− βn+1)Un+1xn+1, βnu⊕ (1− βn)Unxn)

≤ d(βn+1u⊕ (1− βn+1)Un+1xn+1, βnu⊕ (1− βn)Un+1xn+1)

+ d(βnu⊕ (1− βn)Un+1xn+1, βnu⊕ (1− βn)Unxn)

≤ |βn+1 − βn| d(Un+1xn+1, u) + (1− βn)d(Un+1xn+1, Unxn)

≤ |βn+1 − βn| d(Un+1xn+1, u) + (1− βn)(d(Un+1xn+1, Unxn+1)

+ d(Unxn+1, Unxn))

≤ (1− βn)d(xn+1, xn) + |βn+1 − βn| d(Un+1xn+1, u)

+ d(Un+1xn+1, Unxn+1).

We show
∑∞

n=1 d(Un+1xn+1, Unxn+1) < ∞. Let t ∈ ]0, 1[. For all x ∈ X, we
have

N∑
k=1

αk
nd
(
Rλk

nf
kx, Unx

)2
≤

N∑
k=1

αk
nd
(
Rλk

nf
kx, tUnx⊕ (1− t)Un+1x

)2
≤ t

N∑
k=1

αk
nd
(
Rλk

nf
kx, Unx

)2
+ (1− t)

N∑
k=1

αk
nd
(
Rλk

nf
kx, Un+1x

)2
− t(1− t)

N∑
k=1

αk
nd(Unx, Un+1x)

2

= t
N∑

k=1

αk
nd
(
Rλk

nf
kx, Unx

)2
+ (1− t)

N∑
k=1

αk
nd
(
Rλk

nf
kx, Un+1x

)2
− t(1− t)d(Unx, Un+1x)

2.

Since 1− t > 0, we obtain

td(Un+1x, Unx)
2 ≤

N∑
k=1

αk
nd
(
Rλk

nf
kx, Un+1x

)2 − N∑
k=1

αk
nd
(
Rλk

nf
kx, Unx

)2
.

Tending t → 1, we have

d(Un+1x, Unx)
2 ≤

N∑
k=1

αk
nd
(
Rλk

nf
kx, Un+1x

)2 − N∑
k=1

αk
nd
(
Rλk

nf
kx, Unx

)2
.
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Similarly, we have

d(Un+1x, Unx)
2 ≤

N∑
k=1

αk
n+1d

(
Rλk

n+1f
kx, Unx

)2
−

N∑
k=1

αk
n+1d

(
Rλk

n+1f
kx, Un+1x

)2
.

From the above two inequalities, we get

d(Un+1x, Unx)
2 ≤ 1

2

N∑
k=1

(
αk
nd
(
Rλk

nf
kx, Un+1x

)2 − αk
nd
(
Rλk

nf
kx, Unx

)2
+αk

n+1d
(
Rλk

n+1f
kx, Unx

)2
− αk

n+1d
(
Rλk

n+1f
kx, Un+1x

)2)
.

Put D = d(Rλk
nf

kx,Rλk
n+1f

kx). We obtain

αk
nd
(
Rλk

nf
kx, Un+1x

)2 − αk
n+1d

(
Rλk

n+1f
kx, Un+1x

)2
≤ αk

n

(
D + d

(
Rλk

n+1f
kx, Un+1x

))2
− αk

n+1d
(
Rλk

n+1f
kx, Un+1x

)2
= αk

n

(
D2 + 2Dd

(
Rλk

n+1f
kx, Un+1x

)
+ d

(
Rλk

n+1f
kx, Un+1x

)2)
− αk

n+1d
(
Rλk

n+1f
kx, Un+1x

)2
= αk

n

(
D2 + 2Dd

(
Rλk

n+1f
kx, Un+1x

))
+
∣∣αk

n+1 − αk
n

∣∣ d(Rλk
n+1f

kx, Un+1x
)2

.

Summarizing above inequalities, we get

d(Un+1x, Unx)
2

≤ 1

2

N∑
k=1

(∣∣αk
n+1 − αk

n

∣∣ (d (Rλk
nf

kx, Unx
)2

+ d
(
Rλk

n+1f
kx, Un+1x

)2)
+ αk

n

(
D2 + 2Dd

(
Rλk

n+1f
kx, Un+1x

))
+ αk

n+1

(
D2 + 2Dd

(
Rλk

nf
kx, Unx

)))
≤

N∑
k=1

(
4
∣∣αk

n+1 − αk
n

∣∣ d(x, z)2 +D2 + 4Dd(x, z)
)
.
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On the other hand, by Lemma 2.3, we have

d
(
Rλk

n+1f
kx,Rλk

nf
kx
)2

≤
λk
n+1 − λk

n

λk
n+1 + λk

n

(
d
(
Rλk

n+1f
kx, x

)2
− d

(
Rλk

nf
kx, x

)2)
≤
∣∣λk

n+1 − λk
n

∣∣
2a

(
d
(
Rλk

n+1f
kx, x

)
+ d

(
Rλk

nf
kx, x

))
∣∣∣d(Rλk

n+1f
kx, x

)
− d

(
Rλk

nf
kx, x

)∣∣∣
≤
∣∣λk

n+1 − λk
n

∣∣
2a

(
d
(
Rλk

n+1f
kx, x

)
+ d

(
Rλk

nf
kx, x

))
d
(
Rλk

n+1f
kx,Rλk

nf
kx
)

≤
∣∣λk

n+1 − λk
n

∣∣
2a

(
d
(
Rλk

n+1f
kx, z

)
+ d

(
Rλk

nf
kx, z

)
+ 2d(x, z)

)
d
(
Rλk

n+1f
kx,Rλk

nf
kx
)

≤
∣∣λk

n+1 − λk
n

∣∣
2a

· 4d(x, z)d
(
Rλk

n+1f
kx,Rλk

nf
kx
)
.

Then we get

d
(
Rλk

n+1f
kx,Rλk

nf
kx
)
≤

2
∣∣λk

n+1 − λk
n

∣∣
a

d(x, z).

By the above inequality, we have

d(Un+1x, Unx)
2

≤ 4d(x, z)2
N∑

k=1

(∣∣αk
n+1 − αk

n

∣∣+ (λk
n+1 − λk

n)
2

a2
+

2
∣∣λk

n+1 − λk
n

∣∣
a

)
.

Since
∑∞

n=1

∑N
k=1

∣∣αk
n+1 − αk

n

∣∣ < ∞,
∑∞

n=1

∑N
k=1

∣∣λk
n+1 − λk

n

∣∣ < ∞ and bound-

edness of {xn}, we obtain
∑∞

n=1 d(Un+1xn+1, Unxn+1) < ∞. By Lemma 2.4,
we have limn→∞ d(xn+1, xn) = 0. Furthermore,

d(Unxn, xn) ≤ d(Unxn, xn+1) + d(xn+1, xn)

≤ d(Unxn, βnu⊕ (1− βn)Unxn) + d(xn+1, xn)

≤ βnd(Unxn, u) + d(xn+1, xn).
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Since limn→∞ βn=0 and limn→∞ d(xn+1, xn)=0, we get limn→∞ d(Unxn, xn)=
0. We show lim supn→∞

(
d(u, PFu)

2 − (1− βn)d(u, Unxn)
2
)
≤ 0. We have

∣∣(d(u, PFu)
2 − (1− βn)d(u, Unxn)

2
)
−
(
d(u, PFu)

2 − d(u, xn)
2
)∣∣

=
∣∣d(u, xn)

2 − d(u, Unxn)
2 + βnd(u, Unxn)

2
∣∣

≤
∣∣d(u, xn)

2 − d(u, Unxn)
2
∣∣+ βnd(u, Unxn)

2

= |(d(u, xn) + d(u, Unxn))(d(u, xn)− d(u, Unxn))|+ βnd(u, Unxn)
2

= |d(u, xn) + d(u, Unxn)| |d(u, xn)− d(u, Unxn)|+ βnd(u, Unxn)
2

≤ |d(u, xn) + d(u, Unxn)| d(Unxn, xn) + βnd(u, Unxn)
2.

Since limn→∞ βn=0, limn→∞ d(Unxn, xn)=0 and boundedness of {xn}, {Unxn}
we get limn→∞

∣∣(d(u, PFu)
2−(1−βn)d(u, Unxn)

2
)
−
(
d(u, PFu)

2−d(u, xn)
2
)∣∣ =

0. From boundedness of {xn}, we can take a subsequence {xni
} ⊂ {xn}

such that {xni
} ∆-converges to x0 and lim infn→∞ d(u, xn) = limi→∞ d(u, xni

).
Thus we obtain

lim sup
n→∞

(
d(u, PFu)

2 − (1− βn)d(u, Unxn)
2
)
= lim sup

n→∞

(
d(u, PFu)

2 − d(u, xn)
2
)

= d(u, PFu)
2 − lim inf

i→∞
d(u, xni

)2

≤ d(u, PFu)
2 − d(u, x0)

2.

Since
∑∞

n=1

∑N
k=1

∣∣αk
n+1 − αk

n

∣∣ < ∞ and
∑∞

n=1

∑N
k=1

∣∣λk
n+1 − λk

n

∣∣ < ∞, we

obtain
{
αk
n

}
converges to αk ∈ [a, 1− a] and

{
λk
n

}
converges to λk ∈ [a,∞[ for

every k = 1, 2, . . . , N . Let Ux = argminy∈X

∑N
k=1 α

kd
(
Rλkfkx, y

)2
. Then we

have

lim
n→∞

d(Unxn, Uxn)

≤ 2 lim
n→∞

d(xn, z)

√√√√ N∑
k=1

(
|αk

n − αk|+ (λk
n − λk)2

a2
+

2 |λk
n − λk|
a

)
= 0.

Therefore, we obtain limn→∞ d(Uxn, xn) = 0. Since F =
⋂N

k=1 argminX fk

and Lemma 2.2, we have x0 ∈ F . Therefore, we get d(u, PFu) ≤ d(u, x0).
We also obtain lim supn→∞(d(u, PFu)

2 − (1− βn)d(u, Unxn)
2) ≤ 0. From this
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inequality, we have

d(xn+1, PFu)
2 ≤ d(βnu⊕ (1− βn)Unxn, PFu)

2

≤ βnd(u, PFu)
2 + (1− βn)d(Unxn, PFu)

2

− βn(1− βn)d(u, Unxn)
2

≤ (1− βn)d(xn, PFu)
2 + βn(d(u, PFu)

2

− (1− βn)d(u, Unxn)
2).

By Lemma 2.4, we have limn→∞ d(xn, PFu) = 0. □
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