Proceedings of the International Conference on NAGRBOCA

Nonlinear Analysis and Convex Analysis & 2019
International Conference on Optimization: M

Techniques and Applications -I-
(Hakodate, Japan, 2019), 221-232

ITERATIVE SEQUENCES FOR A BALANCED MAPPING OF
RESOLVENTS

KENGO KASAHARA AND YASUNORI KIMURA

ABSTRACT. In this paper, we find a common minimizer of a finite convex
functions by using Halpern’s and Mann’s iterative scheme. Furthermore,
we use iterative sequences which are generated by a finite resolvent oper-
ators without regard of order.

1. INTRODUCTION

We know that there are various kinds of iterative scheme which is effective
to find fixed points of nonexpansive mappings. In this paper, the authors
pay attention to Halpern’s [3] and Mann’s [8] iterative scheme. A number of
authors have proved theorems by using these scheme. Wittmann [13] proved the
convergence of Halpern iterative scheme in a Hilbert space. Reich [10] proved
that of Mann iterative scheme in a Banach space. Takahashi and Tamura [12]
proved that of Halpern iterative scheme by using two nonexpansive mappings
in a Banach space. Dhompongsa and Panyanak [2] proved that of Mann type
iteration in a CAT(0) space. Saejung [11] proved that of Halpern type iteration
in a CAT(0) space. We especially note that Kimura and Hasegawa proved the
convergence of Mann [4] and Halpern [5] type iteration by using a balanced
mapping in a CAT(0) space.

Theorem 1.1 (Hasegawa-Kimura [4]). Let X be a complete CAT(0) space. Let
T* be a nonexpansive mapping from X to X for everyk =1,2,..., N such that
F = ﬂ,?[:l F(T*) # 0. For a given real number a € |0, 3], let {ak} ,{B,} C
[a,1 —a] for every k =1,2,...,N and n € N such that Zszl af = 1. Define
U, be a mapping from X to X by

N

U,z = argmin Z afd(T*z, y)?
veX k4
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for every x € X and n € N. For a given point x1 € X, let {x,} be a sequence
in X generated by

Tn+1 = ann © (1 - 6n)Unxn
for every n € N. Then {x,} A-converges to a point in F.

Theorem 1.2 (Hasegawa-Kimura [5]). Let X be a complete CAT(0) space.
Let T* be a nonexpansive mapping from X to X for every k = 1,2,...,N
such that F = ﬂszl F(T*) # 0. For a given real number a € ]0,%], let
{Bn} €10,1[, {ak} C [a,1—a] for every k =1,2,...,N and n € N such that
lim,, oo ﬁn =0, 2701021 Bn = 00, Zzozl |Bn+1 - Bn| < 09, Zivzl O‘ﬁ =1 and

ZZOZI Zgﬂ |a’fL+1 — afL| < 00. Define a mapping U,, from X to X by

N
U,z = argmin Z ald(Thz,y)?
yeX k=1
for every x € X and n € N. For given points u,x1 € X, let {x,,} be a sequence
i X generated by

for every n € N. Then {x,} converges to Pru.

In this paper, the authors prove two theorems based on Theorems 1.1 and
1.2 with the resolvent of a convex function in a complete CAT(0) space.

2. PRELIMINARIES

Let X be a metric space and let {x,} be a sequence in X. An element z € X
is said to be an asymptotic center of {z,,} C X if
limsup d(x,,, 2) = inf limsup d(z,, )
n—00 z€X pooo
Moreover, we say {x,} A-converges to a A-limit z if z is the unique asymptotic
center of any subsequences of {z,}. For z,y € X, a mapping c: [0,]] = X is
called a geodesic if ¢ satisfies

c(0) =z, c(l) =y, and d(c(u), c(v)) = |u —v|

for every u,v € [0,1]. If a geodesic exists for every x,y € X, then we call X a
geodesic space. Moreover, if a geodesic exists uniquely for every x,y € X, then
we call X a uniquely geodesic space.

Let X be a uniquely geodesic space. An image [z, y] of ¢ is called a geodesic
segment joining x and y. For a triangle A(x,y, z) C X, a comparison triangle
A(Z,7, %) in the Euclidean plane R? is defined as a triangle such that each
corresponding edge has the same length as that of the original triangle. If
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for every z,y,z € X, every p,q € A(x,y,2) and their corresponding points
D,q € A(Z, 7, Z) satisfy that

dp,q) < lp—4ql,

X is called a CAT(0) space.

Let X be a CAT(0) space. For every z,y € X with a € [0,1], if z € [z,y]
satisfies that d(y, z) = ad(z,y) and d(z,z) = (1 — a)d(z,y), then we denote z
by z =az® (1 — a)y.

Let X be a CAT(0) space and let T be a mapping from X to X such
that the set F(T) = {z € X : z = Tz} of fixed points of T is not empty.
If d(Tz,Ty) < d(z,y) for every z,y € X, then we call T a nonexpansive
mapping. Let X be a complete CAT(0) space and let C' be a nonempty closed
convex subset of X. Then for every z € X, there exists a unique point xy € C'
satisfying

d(x,x0) = yllelg d(z,y).

We define the metric projection Po from X onto C by Pox = xg. We know that
the metric projection Pc is a nonexpansive mapping such that F(Pg) = C.

Let X be a complete CAT(0) space. Let f be a proper lower semicontinuous
convex function from X into |—oo,00]. For A > 0, the resolvent Ry of Af is
defined by

Rypx = argmin{\f(y) + d(y, z)*}
yeX

for all z € X [6, 9]. We know that Ry is a single-valued mapping from
X to X. We also know that the resolvent R); is nonexpansive such that
F(Ryy) = argmin ¢ x f.

Let X be a complete CAT(0) space. Let T* be a nonexpansive mapping from
X to X for every k = 1,2,...,N. Let {a*} C ]0,1[ for every k = 1,2,..., N
such that ij:l a® = 1. Hasegawa and Kimura [4] define a balanced mapping

U from X to X by
N

Uz = argmin Z d(T*z,y)?
yeX 1
for every x € X. They find that this mapping U is defined as a single-valued
mapping, has nonexpansiveness and F(U) = ﬂkN:1 F(T*). We introduce some
lemmas used for our results.

Lemma 2.1. (Hasegawa-Kimura [4]) Let X be a complete CAT(0) space. Let
T* be a nonexpansive mapping from X to X for every k = 1,2,...,N. Let
{a*} € 10,1[ for every k = 1,2,...,N such that Zgzl o = 1. Define a
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balanced mapping U : X — X by Ur = argmin, ¢y Zszl akd(T*z,y)? for
every x € X. Then we have

N
Z oFd(Trz, Ux)?
k=1

for every x,y € X.

2

kd(Uy,Ux)?

Mz
5
M

k=1 k=1

Lemma 2.2 (Hasegawa-Kimura [5]). Let X be a complete CAT(0) space. Let
U be a nonexpansive mapping from X to X. Suppose {x,} C X is A-convergent
to xg € X and {d(zyn,Uxy,)} is convergent to 0. Then xo € F(U).

Lemma 2.3 (Kimura-Kohsaka [7]). Let X be a complete CAT(0) space. Let f
be a proper lower semicontinuous convez function from X into |—o0o,00|. Let
A >0, and Ryg, R,y be the resolvent of Af,uf. Then we have
(A w)d(Rysx, Rypz)? + pd(Rypx, ) + Md(R, pz, )?
< M(Rypz,2)? + pd(R,pz, )?
for every x € X.
Lemma 2.4 (Aoyama-Kimura-Takahashi-Toyoda [1]). Let {s, },{un} C]0, 0],

{t.} € R and {a,} C [0,1] such that Y~ a, = 00, Y oo u, < 0o and
limsup,, ,. tn < 0. Suppose that

Sn+1 S (1 - an)sn + antn + un
for allm € N. Then lim,,_, o, s,, = 0.

3. MAIN RESULTS

Theorem 3.1. Let X be a complete CAT(0) space. Let f* be a proper lower
semicontinuous convex function from X into |—oo, 00| for everyk =1,2,... N

such that F = ﬂkN:1 argminy f* # 0. For a given real number a € }O, %}, let
{ak} {8} C [a,1—d] and {AL} C [a,00[ for every k = 1,2,...,N and
n € N such that Zk 1 af = 1. Let Ry g be the resolvent of )\kfk for every

k=1,2,....,N andn € N Define U, be a mapping from X to X by
N
Upx = argmana d R)\kka y)
vEX 14

for every x € X and n € N. For a given point x1 € X, let {x,} be a sequence
in X generated by

Tn+l = ﬂnxn @ (1 - Bn)Unxn
for every n € N. Then {z,} A-converges to a point in F.
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Proof. Let z € F. Then we have
d(Tpi1,2)? = d(Bpry ® (1 — Bp)Upnty, 2)?
< Bnd(z3,2)* + (1 = Bn)d(Unn, 2)* = Bu(1 = Bu)d(Untn, x0)?
< (. 2)? = Bu(l = fr) AUz, 20)?
< d(xp,2)?.
Thus, we obtain d(z,41,2) < d(zp, 2) for all n € N and there exists
D= nh_{réo d(xp, z) < d(z1, 2).
Since 0 < a? < B,(1 — B,), we have lim,,_ d(Up2y,x,) = 0. From bounded-
ness of {z,}, it follows that

lim d(xy,,2) < lim (d(zn, Upzyn) + d(Upxn, 2))
n— o0

n—o0

nh_)rrgo d(Upy, 2)

= lim d(Unxn,Unz)

n— oo

< lim d(zy, 2).

T n—oo
Thus we get lim, o0 d(Zn, 2) = limy 00 d(Up2p, 2) = D. By Lemma 2.1,
N N

Z o/fld (Rkﬁkan, Una:n)2 < Z afbd (R,\ﬁkam z)2 —d(z,Upxy)?
k=1 k=1

N
< Z ok d(zn, 2)* — d(z,Upz,)?
k=1

=d(xp,2)* — d(z,Upzn)?.

n?
E = 1,2,...,N. Since lim, oo d(Upzp,z,) = 0, we also get
lim, 0o d(R)\;;kan,xn) =0 for every k = 1,2,...,N. Since {z,} is bounded,
there exists a subsequence {z,, } of {x,,} which A-converges to a point zy € X.
Assume g € argminy f1. Then we get

Since 0 < a < oF, we obtain lim,_, d(RAﬁkan,Unxn) = 0 for every

limsup d (zy,, ,20) < limsupd (zn,, Rx1 p10)

=00 =00

< lim sup (d (xnr, Ry1 1 xnr) +d (RAHMHM RA;JH:UO))

r—00
<limsupd (z,,,zo) .
r—00
We obtain a contradiction and g € argminy f1. Similarly, we can show x €
argminy f* for all k = 1,2,..., N. Suppose that there are two subsequences
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{u;} and {v;} of {z,,} which A-converges to uy and vy, respectively. Then we
obtain that ug,vg € ﬂ]kvzl argminy f¥ and both {d(x,,uo)} and {d(x,,vo)}
have limits. Assume that ug # vy, then we obtain

lim d(zp,up) = lim d(u;,uo)
n—oo 71— 00

< lim d(u;,vo)

71— 00

= nh—>Holo d(zn,vo)

= ‘lim d(Ui7 ’U())
71— 00

A

‘lim d(vi, U())
71— 00
= nh_}rrolo d(xn,up)

It is a contradiction and thus ug = vy. Hence we obtain {x,} A-converges to
xg € F. O

Theorem 3.2. Let X be a complete CAT(0) space. Let f* be a proper lower

semicontinuous convex function from X into |—oo, o] for every k =1,2,...,N

such that F' = ﬂkN:1 argminy f¥ # (. For a given real number a € }O, %}, let

{8} € 10,1], {ak} C [a,1—a] and {\i} C [a,00] for every k =1,2,...,N

and n € N such that lim, o B, =0, > 00y B =00, Yoo |Bnt1 — Bal < 00,
N oo N 00 N

Zk:l O‘]ﬁ =1, Zn:l Zk:l |0‘fz+1 - alﬂ < 00 and Zn=1 Zk:l |)"ﬁ+1 - )\ﬁ| <

0. Let Rykyr be the resolvent of e £k for every k = 1,2,...,N and n € N.

Define U, be a mapping from X to X by

N

U, x = argmin Z akd (R)\ﬁfk x, y)2
yeX ko1

for every x € X and n € N. For given points u,x1 € X, let {x,} be a sequence
i X generated by

Tpt1 = Bou ® (1 — Bn)Unxyn
for every n € N. Then {x,} converges to Pru.
Proof. We show boundedness of {z,} and {U,z,}. Let z € F. Then we have
d(Tny1, Z) =d(Bru® (1 - Bn)Unmm z)
< Bnd(u, z) + (1 = Bp)d(Upzy, 2)
< Bnd(u, 2) + (1 = By)d(xy, 2)
< max{d(u, z),d(z,, 2)}
< max{d(u, 2),d(x1,2)}.
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Thus we obtain {z,} and {U,z,} are bounded. We also have

d(xn-&-% xn-&-l) < d(ﬁn-i-lu 2] (1 - 5n+1)Un+1xn+1aﬁnu D (1 - ﬁn)Unxn)

< d(Bp+1u @ (1 = Bag1)Un+12Zn41, Bau @ (1 = Bn)Uny1Tnt1)
+d(Bru® (1 — Bn)Unt1Znt1, Bnu ® (1 — Bn)Unay)

< |Bnt1 = Bl d(Uns12nt1,u) + (1 = Bn)d(Un+12Zn41, Un®n)

< |Bnt1 = Bul d(Unt1zni1,u) + (1 = Bp)(d(Uns1Zn41, UnTnyr)
+d(Upxpy1, Unxy))

< (1= Bn)d(wni1,n) + [Brng1 — Bl d(Uns17n 41, )
+ d(Up+1@n+1, UnTny1).

We show Y07 d(Upt+1@nt1, Up@nt1) < 0o. Let ¢ €]0,1[. For all z € X, we
have

N
Z akd (R)\I:Lfk T, Unac)2
k=1

O[],Zd (R}\I:Lka, tUnl’ S5 (1 - t)Un+1I)2

M=

b

=1

N
ty akd (Rox gz, Unx)2 +(1-1) Z akd (R,\ﬁka, Uanc)2
k=1 k=1

IN
Il
z

=z

—t(1—1t) Z o d(U,z, Uy yq2)?
k=1

=

N
= tz akd (RA’fo"m’ Unm)2 +(1—-1) Z akd (R)\I;:Lfkl', Unﬂac)2
k=1 k=1

—t(1 = t)d(Upx, Uy 12)2.
Since 1 — ¢t > 0, we obtain

N
td(Up 12, Un2)? < 3 abd (Roe po, Unaz)” = S akd (Rye prx, Upr)
k=1 k=1

Tending ¢t — 1, we have

N N
d(Uns12,Upz)? < 3" akd (Ry pra, Unaz)” = Y akd (Ryx pr, Up)”.
k=1 k=1
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Similarly, we have

N
2
d(Un12,Upz)? < 3ok, d (Rkﬁﬂf;@x, Unx)
k=1
N

2
— Z OszJrld (R)\icl+1ka, Un_Hx) .
k=1

From the above two inequalities, we get

N
Z (aﬁd (R)\’éka’ Un+1x)2 — aﬁd (R,\ﬁka, Unx)2
k=1

2 2
+a’]fl+1d (R)‘Z+lka’ Un$> - a’]fl-i-ld <R}\Z+1ka, Un+1x) ) .

DN | =

d(Up 12, Upz)? <

Put D = d(R)\ITchkl‘7R)\ﬁ+lfkm). We obtain

2
2
akd (R/\iclka, Un+1a:) — osz_ld (R/\Llka’ Un+1x>
2 2
k k
< Qp (D +d (R)\flJrlf’“z? Un+1iE)> - an+1d (R)\flJrlf’fz» Un-l—le)

2
— ok < D? +2Dd (le o, Un+1x) +d (RAZH s Unﬂm) >

2
— a]:H_ld (R)‘fwdsz’ Un+1:E>
. (Dz +2Dd (leka, Uon))
k k 2
+ |ozn+1 — ozn| d (RALJ;CI, U,H_lx) .
Summarizing above inequalities, we get

d(Up 12, Upz)?
N

2
< ! Z (‘afLH — ozfi| (d (R)\iclfk.’f, Una:)2 +d (R)\f:l+1ka, Un+1m) )

k=1

+ak (D +2Dd (Rys | jrw,Uny1z) ) + abyy (D +2Dd (Ryy s, Unx)))
N

< Z (4 |o¢lfl+1 — ozm d(z,2)* + D* +4Dd(z, 2)) .
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On the other hand, by Lemma 2.3, we have
2
d (RAicl+1ka, R/\ﬁfkl‘)

PLIPE Y. )

Ahi1 = Al
B () i)

‘d (RAﬁ+1fkm’ :Z}) —d (R)\ﬁfkl‘,ﬂ?)‘

A= Ab
<Pl (0 (o) g o)

d (R}\Ircb+1fkl‘7 R)\I:Lka>

N1 — b
< S (4 (Rag o) + d (Rag o) + 2002, 2))
d (R)‘Z+1ka, R)\chlfkl)

k _\k
< [Xnen = An] -4d(z, 2)d (Rk’iﬂf”’RAﬁka) '

2a
Then we get
2|AF L —AK
d (R)\ﬁﬂka, R)\iclfkl') < %d(a@, z).
By the above inequality, we have
d(Up 12, Uyz)?
N k k
(/\k 1_)\k)2 2 An 1_)‘n|
§4d(x,z)2;<|aﬁ+1am+ nt e e+ ’ +a .

. N N
Since Y07 Sy ok —ak| < o0, 3007 STl [AE L, — AE| < oo and bound-
edness of {z,}, we obtain Y 7 d(Up+1%n+1, Up@nt1) < co. By Lemma 2.4,
we have lim,,_, o d(Zp41, ) = 0. Furthermore,

d(Unxna mn) < d(Unxny :En+1) + d(l‘n+1, .Tn)

< d(Unxy, Bnu @ (1 = Bn)Upnxyn) + d(2pq1, Tp)
S ﬂnd(Unxnv u) + d(anrl? mn)
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Since lim,, o0 B, =0 and lim,, o0 d(Tp11, Tn) =0, we get limy, s oo d(Up @y, T,) =
0. We show limsup,,_, . (d(u, Pru)? — (1 — B,)d(u, U,z,)?) < 0. We have

’(d(u Ppu)2 — (1= 3n)du,U xn)g) — (d(u7PFu)2 — d(u,xn)2)‘
|d u, zn —d(u, U, mn) + Bnd(u, Un:cn)2|
< d(u, 2n)? = d(u, Upzn)?| + Bud(u, Unan)?
= |(d(u, z,) + d(w, Upxp))(d(u, x,) — d(u, Upzn))| + Brd(u, Unty)?
= |d(u, x) + d(u, Upz,)| |d(u, 2,) — d(u, Upzy)| 4 Bud(u, Upx,)?
< |d(u, z) + d(u, Upzn)| d(UnTn, 20) + Brd(u, Unzy)?.

Since lim,, o0 B, =0, lim,— oo d(Up x4y, ,) =0 and boundedness of {xn} {Unxn}
we get lim,, o0 |(d(U,PFU)2*(176n)d(U, Unxyn) ) (d(u Pru)?—d(u,r,) )| =
0. From boundedness of {z,}, we can take a subsequence {xn b C {zn}
such that {z,,, } A-converges to xy and liminf, _, . d(u, z,) = lim;_, oo d(u, 2,,).
Thus we obtain

limsup (d(u, Pru)® — (1 — B,)d(u, Upz,)?) = limsup (d(u, Ppu)® — d(u, z,)?)

n—roo n—r oo

= d(u, Pru)? — lim inf d(u, 2,,,)*
11— 00
< d(u, Ppu)? — d(u, x0)?.

: N
Since Y07 Sy ok, — k| < oo and Y 0 1Zk LAE L = A < oo, we
obtain {af} converges to o € [a,1 — a] and {AX} converges to A\* € [a, oo for

every k =1,2,...,N. Let Uz = argmin, x Zi\;l akd (R)\kka,y)Q. Then we
have

lim d(U,xn, Uxy,)

n— oo

N
e — /\k)Z 2 |)\k _ )\k|
k _ ~k (n n
<2nhf§odx"’ JE <|an k| + e + "

k=1

=0.

Therefore, we obtain lim,,_,cc d(Uzp,x,) = 0. Since F' = ﬂ,lcvzl argmin y f*
and Lemma 2.2, we have o € F. Therefore, we get d(u, Pru) < d(u,xo).
We also obtain limsup,,_, .. (d(u, Pru)? — (1 — B,,)d(u, Uyz,)?) < 0. From this
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inequality, we have

d(.’L‘n+1,PFU)2 <d(Bpud(1-— Bn)Unxn,PFu)2
< Bpd(u, Pru)? + (1 — Bn)d(Upzy, Pru)?
— Bn(1 = Ba)d(u, Uy )?
< (1= Bp)d(zn, Pru)® + By (d(u, Ppu)?
— (1= Bn)d(u, Upzn)?).

By Lemma 2.4, we have lim,,_, o, d(z,, Pru) = 0. d
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