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areas as divergent as network design, VSLI design, and image processing (see,
e.g., [5, 15,16]).

It is known that the QAP is NP-hard (see, e.g., [20]) and it has remained
difficult to solve even if the size of the problem is moderate, e.g., n = 30 [1].
This fact implies that finding better lower and upper bounds of the optimal
value is quite important to solve it. An efficient tool for finding such bounds
is semidefinite (SD) relaxation (see, e.g., [6, 13, 14, 17–19, 21]). SD relaxation
in [21] uses facial reduction to guarantee strict feasibility for both the relaxed
problem and its dual and simplifies the constraints by making many of them
redundant.

However, SD relaxation still often forces us to solve a large-scale semidefi-
nite programs. Recently, Oliveira, Workowicz, and Xu [14] performed compu-
tational experiments showing that their alternating direction method of mul-
tipliers (ADMM) is promising for solving the SD relaxation of the QAP. The
authors derived the update formula for solving the SD relaxation of the QAP
proposed in [21]. They also derived upper and lower bounds of the QAP from
the solution obtained by their ADMM and compared their bounds with existing
bounds.

The ADMM is a first-order method, which requires less computation per iter-
ation and is highly scalable. However, its computation often becomes unstable
and requires a significant number of iterations to compute an accurate solution.
On the other hand, the interior-point method is a second-order method and
computationally expensive. Still, it is known to be stable and to require only a
small number of iterations due to the centering steps, which forces the current
iterate closer to the central path. Our motivation is to accelerate the ADMM
proposed in [14] by combining the benefits of the ADMM and the interior-point
method. In this paper, we devise a new algorithm, called Centering ADMM,
which is an ADMM combining the centering steps of the interior-point method
in its first stage.

A similar approach was taken by Lin et al. [12], where the authors proposed
an ADMM-Based Interior Point Method (ABIP) for solving large-scale linear
programs. Their ABIP and our Centering ADMM are similar in the sense
that both methods add a centering effect in the search direction by using a
barrier function. However, Centering ADMM is different from ABIP for the
following reasons: Centering ADMM is limited to solving the SD relaxation
of the QAP. Also, it performs centering steps only in the primal problem and
in its first stage. It reverts to (the standard) ADMM if the current iterate is
sufficiently close to the central path with a sufficiently small value of the barrier
parameter. On the other hand, ABIP employs centering steps in both primal
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and dual problems using the homogeneous self-dual form of linear programs
throughout its iterations.

To observe the effect of the centering steps, we conducted numerical exper-
iments using instances in QAPLIB [3] and compared the solutions obtained
with the ADMM in [14] and with Centering ADMM. The results demonstrate
that the centering steps are quite efficient for some classes of instances.

The organization of the paper is as follows: After giving a brief introduction
of (the standard) ADMM in section 2, we describe its in details for solving
the SD relaxation of the QAP proposed in [14] in section 3. We provide our
new method, Centering ADMM, in section 4. Then, we show that Centering
ADMM (not employing a dynamic update of the penalty parameter) has global
convergence properties in section 5. In section 6, we numerically compare
these two methods in terms of their lower bounds of the QAP for instances in
QAPLIB [3].

2. Standard ADMM

Here, we give a brief introduction of the (standard) alternating direction
method of multipliers. To contrast with Centering ADMM, we will refer to the
method as the Standard ADMM in the following.

The Standard ADMM was proposed by Glowinski and Marrocco [9] and
Gabay and Mercier [8] for solving the following type of optimization problem:

(2.1)
minimize f(x) + g(z)
subject to Ax+Bz = c,

where x ∈ Rn, z ∈ Rm , A ∈ Rk×n, B ∈ Rk×m, c ∈ Rk and f : Rn → R∪{+∞}
and g : Rm → R ∪ {+∞} are closed proper convex functions.

By introducing a penalty parameter ρ > 0, the augmented Lagrangian func-
tion for problem (2.1) is given by

Lρ(x, z, y) := f(x) + g(z) + ⟨y,Ax+Bz − c⟩+ ρ

2
∥Ax+Bz − c∥2,

where y ∈ Rk is the dual variable or Lagrange multiplier. Using the augmented
Lagrangian function, ADMM updates the variables (xk, yk, zk) as follows:

xk+1 := argminxLρ(x, z
k, yk),

zk+1 := argminzLρ(x
k+1, z, yk),

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c).

The third update formula is a feature of the Standard ADMM. It updates the
dual variable y in its gradient direction, i.e., in the direction that increases the
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objective function value of the dual problem. For this reason, the Standard
ADMM is sometimes considered to be a method that solves the dual problem.

3. Standard ADMM for the SD relaxation of the QAP

As shown in, e.g., [16], the set Πn of all permutation matrices can be repre-
sented as

Πn = On ∩ En ∩Nn = On ∩ En ∩ Zn,

where On := {X ∈ Rn×n|XXT = XTX = I}, En := {X ∈ Rn×n|Xe = XT e =
e}, Nn := {X ∈ Rn×n|X ≥ 0}, Zn := {X ∈ Rn×n|X ◦X −X = O}, I ∈ Rn×n

is the identity matrix, e ∈ Rn is the vector of ones, A ◦ B is the Hadamard
product of A ∈ Rn×n and B ∈ Rn×n. Using this fact, Zhao et al. [21] showed
that the QAP (1.1) is equivalent to the following problem QAPO:

QAPO minimizeX ⟨FXD − C,X⟩
subject to XXT = I,

XTX = I,
∥Xe− e∥2 + ∥XT e− e∥2 = 0,
X ◦X −X = O.

We also define Sn := {X ∈ Rn×n | X = XT }, and for any A,B ∈ Sn, we say
A ⪰ B if A−B is positive semidefinite. By considering the dual problem of the
Lagrange dual of QAPO and projecting the dual problem onto the minimal face,
they also showed that the following problem QAPR1 gives an SDP relaxation
problem for the QAP (1.1):

QAPR1 minimizeR tr(V̂ TLQV̂ R)

subject to GJ(V̂ RV̂ T ) = E00,
R ⪰ 0,

where LQ ∈ Sn2+1, V̂ ∈ Rn2+1×(n−1)2+1, E00 ∈ Sn2+1 is the matrix whose
(1, 1)-element is one and all other elements are zero, J ⊆ {(i, j) | 1 ≤ i, j ≤ n2}
are given, R ∈ S(n−1)2+1 is the variable matrix, and GJ : Sn2+1 → Sn2+1 is
the gangster operator defined by

(3.1) (GJ(Y ))ij :=

{
Yij (i, j) ∈ J or (j, i) ∈ J,

0 otherwise.

More precisely, the matrix LQ is as follows:

(3.2) LQ :=

(
0 − 1

2vec(C)T

− 1
2vec(C) D ⊗ F

)
,

where vec(C) ∈ Rn2

is the vector formed by stacking the columns of C on top
of one another, and A ⊗ B ∈ Rmp×nq is the Kronecker product of A ∈ Rm×n
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and B ∈ Rp×q. The matrix V̂ is the normalized matrix of V̄ ∈ Rn2+1×(n−1)2+1

given by

V̄ :=

(
1 0T

1
n (e⊗ e) V ⊗ V

)
,

where V ∈ Rn×n−1 is a full-rank matrix

V :=

(
In−1

−eT

)
,

and In−1 is the (n− 1)× (n− 1) element matrix. As a result, the matrices V

and V̂ satisfy V T e = 0 and V̂ T V̂ = I.
Note that QAPR1 has a relative interior feasible solution since it is obtained

by projecting an SD relaxation problem to the minimal face [21].
In [14], the authors succeeded in deriving upper bounds and lower bounds

of the QAP by applying the Standard ADMM to QAPR1. In what follows, we
show how we can solve QAPR1 by using ADMM according to the descriptions
in [14].

3.1. Representation of the QAP for which the Standard ADMM is
applicable. In [14], the authors represent QAPR1 as a problem QAPR2 having
two variables R and Y by introducing a new variable Y and adding the equation
Y = V̂ RV̂ T :

(3.3)

QAPR2 minimizeR,Y ⟨LQ, Y ⟩
subject to GJ(Y ) = E00,

Y = V̂ RV̂ T ,
R ⪰ 0.

Next, they consider the following optimization problem for which the Standard
ADMM is applicable:

QAPR3 minimizeR,Y ⟨LQ, Y ⟩+ I(R) + I(Y )

subject to Y = V̂ RV̂ T ,

where the second and third constraints of QAPR2 are combined in the objective
function as the corresponding indicator functions below:

(3.4) I(R) :=

{
0 if R ⪰ 0,

∞ otherwise,
I(Y ) :=

{
0 if GJ(Y ) = E00,

∞ otherwise.

3.2. Update formula of the variables in the Standard ADMM. The
augmented Lagrangian function for QAPR3 is given by

Lρ(R, Y, Z) := ⟨LQ, Y ⟩+ I(R) + I(Y ) + ⟨Z, Y − V̂ RV̂ T ⟩+ ρ

2
∥Y − V̂ RV̂ T ∥2F ,
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where Z is the dual variable matrix. Using this function, the variables are
updated as follows:

Rk+1 := argminRLρ(R, Y k, Zk),(3.5)

Y k+1 := argminY Lρ(R
k+1, Y, Zk),(3.6)

Zk+1 =: Zk + ρ(Y k+1 − V̂ Rk+1V̂ T ).(3.7)

As shown in [14], the above updates can be explicitly calculated by

Rk+1 = PS+
(V̂ T (Y k +

1

ρ
Zk)V̂ ),

Y k+1 = E00 + GJC (V̂ Rk+1V̂ T − 1

ρ
(LQ + Zk)),(3.8)

Zk+1 = Zk + ρ(Y k+1 − V̂ Rk+1V̂ T ),(3.9)

where PS+ is the orthogonal projection onto S+ and JC is a set given by

JC := {(i, j) | 1 ≤ i, j,≤ n2 + 1)} \ J.

In [14], the authors added the constraints 0 ≤ Yij ≤ 1(∀i, j) if 0 ≤ V̂ RV̂ T ≤
1 are satisfied and showed that adding these constraints has a profound effect
in accelerating the convergence of the Standard ADMM.

3.3. Stopping conditions of the Standard ADMM. The stopping condi-
tions are given by the optimal conditions of the Lagrangian function,

L(R, Y, Z) := ⟨LQ, Y ⟩+ I(R) + I(Y ) + ⟨Z, Y − V̂ RV̂ T ⟩.

Let us define f(R) := I(R) and g(Y ) := ⟨LQ, Y ⟩ + I(Y ). Then, the Karush-
Khun-Tucker conditions of QAPR3 are given by

Y − V̂ RV̂ T = O,(3.10)

∂f(R)− V̂ TZV̂ ∋ O,(3.11)

∂g(Y ) + Z ∋ O.(3.12)

Here, as in Section 3.3 of [4], we call (3.10) the primal feasibility constraint,
and (3.11) and (3.12) the dual feasibility constraints, respectively. We see that
condition (3.12) is always satisfied at each iteration (Rk+1, Y k+1, Zk+1). The
update Y k+1 = argminY Lρ(R

k+1, Y, Zk) implies that

∂g(Y k+1) + Zk + ρ(Y k+1 − V̂ Rk+1V̂ T ) ∋ O,

and the update Zk+1 = Zk + ρ(Y k+1 − V̂ Rk+1V̂ T ) implies that

∂g(Y k+1) + Zk+1 ∋ O.
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Thus, condition (3.12), i.e., the dual feasibility of Y , is always satisfied. This
implies that we only need to consider the primal feasibility (3.10) of Z and the
dual feasibility (3.11) of R as stopping conditions. The primal feasibility (3.10)
of Z can be measured by the Frobenius norm of the residual vector rp =

∥Y k+1− V̂ Rk+1V̂ T ∥F . To measure the dual feasibility (3.11) of R, we focus on
the update formula (3.5) of Rk+1. Since we set Rk+1 := argminRLρ(R, Y k, Zk),
Rk+1 satisfies

∂f(Rk+1)− V̂ TZkV̂ + ρ(Rk+1 − V̂ TY kV̂ ) ∋ O,

and this implies that

∂f(Rk+1)− V̂ TZk+1V̂ + V̂ TZk+1V̂ − V̂ TZkV̂ + ρ(Rk+1 − V̂ TY kV̂ ) ∋ O,

and hence,

∂f(Rk+1)− V̂ TZk+1V̂ ∋ ρV̂ T (Y k − Y k+1)V̂ .

This implies that if ρV̂ T (Y k −Y k+1)V̂ = O holds, the dual feasibility (3.11) of

R is guaranteed, and hence, the Frobenius norm of the matrix rd = ∥ρV̂ T (Y k−
Y k+1)V̂ ∥F can be considered as the residual value of the dual problem.

If the values of rp and rd at the iterate (Rk+1, Y k+1, Zk+1) are sufficiently
small, we stop the Standard ADMM. In fact, in [14], the authors chose 10−5 or
10−12 as tolerances, for rp and rd, respectively, whereby if rp and rd become
smaller than these tolerances, the update is stopped.

4. Centering ADMM

We propose a new algorithm, called Centering ADMM, to solve the SDP re-
laxation problem of QAP by combining the path-following scheme employed by
the interior point methods with the Standard ADMM described in the previous
section.

As in the interior point method, we incorporate a barrier function term with
a barrier parameter µ > 0 in the objective function of problem QAPR2 (3.3)
as follows:

(4.1)

BQAPR2 minimizeR,Y ⟨LQ, Y ⟩ − µlog(det(R))
subject to GJ(Y ) = E00,

Y = V̂ RV̂ T ,
R ≻ O.

We consider the following problem for which ADMM is applicable:

(4.2)
BQAPR3 minimizeR,Y ⟨LQ, Y ⟩ − µlog(det(R)) + I(Y )

subject to Y = V̂ RV̂ T .



204 S. KANOH AND A. YOSHISE

In what follows, we derive the update formula for solving the BQAPR3 with
ADMM. First, let us consider the following augmented Lagrangian function:

(4.3)

LBQAP
ρ (R, Y, Z) := ⟨LQ, Y ⟩ − µlog(det(R))

+ I(Y ) + ⟨Z, (Y − V̂ RV̂ T )⟩

+
ρ

2
∥Y − V̂ RV̂ T ∥2F .

The updating formulas for Y and Z are the same as in the Standard ADMM,
defined by (3.6) and (3.7), and have the explicit forms (3.8) and (3.9). On the
other hand, the updating formula for R is defined by

Rk+1 := argminRL
BQAP
ρ (R, Y k, Zk)

= argminR

{
−µlog(det(R)) + ⟨Z, (Y − V̂ RV̂ T )⟩+ ρ

2
∥Y − V̂ RV̂ T ∥2F

}
.(4.4)

We can easily check that the function F (R) = −µlog(det(R)) + ⟨Z, (Y −
V̂ RV̂ T )⟩ + ρ

2∥Y − V̂ RV̂ T ∥2F is strictly convex for any R ∈ Sn
++, and hence,

F (R) has a unique minimum solution in Sn
++. Using this result, we obtain the

following proposition.

Proposition 4.1. Suppose that we obtain a spectral decomposition of the ma-
trix V̂ TZV̂ + ρV̂ TY V̂ into an orthogonal matrix P and a diagonal matrix D,
as

(4.5) V̂ TZV̂ + ρV̂ TY V̂ = PDPT .

Then, the new iterate Rk+1 in (4.4) is given by

(4.6) Rk+1 = PR̄PT ,

where the matrix R̄ is a diagonal matrix whose elements are

(4.7) R̄ii =
Dii +

√
D2

ii + 4ρµ

2ρ
(i = 1, 2, . . . , n).

Proof. Rk+1 can be calculated in a similar way to what is proposed in [4].
Since the function LBQAP

ρ (R, Y, Z) in (4.3) is strictly convex, the gradient of

LBQAP
ρ (R, Y, Z) at Rk+1 should be O, and hence, we have

−µR−1 − V̂ TZV̂ + ρ(−V̂ TY V̂ +R) = O.

The above equation and the decomposition (4.5) imply that

ρR− µR−1 = V̂ TZV̂ + ρV̂ TY V̂

= PDPT ,
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and, by setting R̄ = PTRP , we have

ρR̄− µR̄−1 = D.

Thus, it turns out that R̄ is a diagonal matrix, and R̄ is given by (4.7), since
R and R̄ should be positive semidefinite. □

The update formulas of Centering ADMM consist of (4.6) for R, (3.8) for Y
and (3.9) for Z.

For the Standard ADMM, it was shown in [4] that the following dynamic
update of the penalty parameter ρ, depending on the residual values rp and rd,
τ incr > 1, τdecr > 1, and θ > 1, is an efficient way to accelerate convergence:

(4.8) ρk+1 =


τ incrρk rp > θrd,

ρk/τdecr rd > θrp,

ρk otherwise.

We use this update with τ incr = τdecr = 2 and θ = 10 for both Centering
ADMM and the Standard ADMM.

If the residual values of the primal and dual problems become smaller than
0.1 at iteration k, we consider that the point (Xk, Y k, Zk) is sufficiently close
to the central path, and update the barrier parameter µk by µk+1 = 0.75µk,
where the ratio 0.75 was determined from experience.

If the barrier parameter µk is sufficiently small, e.g., µk < 10−3, we consider
that the point (Xk, Y k, Zk) is sufficiently close to the set of optimal solutions.
In that case, the centering effect of the barrier function is not needed, and we
can switch to the Standard ADMM instead of Centering ADMM.

The full description of Centering ADMM is in Algorithm 1.

5. Global convergence of centering ADMM

In section 3.2 of [4], it has been shown that ADMM (with a fixed penalty
parameter ρ > 0) in section 2 has global convergence properties if the following
assumptions hold (see also Appendix A of [4]):

Assumption 1.: The (extended-real-valued) functions f : Rn → R ∪
{+∞} and g : Rn → R ∪ {+∞} are closed, proper, and convex.

Assumption 2.: The unaugmented Lagrangian L0 (the augmented La-
grangian Lρ with ρ = 0) has a saddle point.

Centering ADMM is an ADMM for problem BQAPR3 (4.2), and the functions
f and g are given by

f(R) := −µlog(det(R)), g(Y ) := ⟨LQ, Y ⟩+ I(Y ),
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Algorithm 1 Centering ADMM

1: initialization
Y 0, Z0, µ0, ρ0

2: while µk < 10−3 do

3: Compute Rk+1 = argminRL
BQAP
ρk (R, Y k, Zk) by (4.6)

4: Compute Y k+1 by (3.8)
5: Compute Zk+1 by (3.9)

6: rp = ∥Y k+1 − V̂ Rk+1V̂ T ∥F
7: rd = ∥ρkV̂ T (Y k − Y k+1)V̂ ∥F
8: if rp > 10rd then
9: ρk+1 = 2ρk

10: else
11: if rd > 10rp then
12: ρk+1 = ρk/2
13: else
14: ρk+1 = ρk

15: end if
16: end if
17: r = max (rp, rd)
18: if r < 0.1 then
19: µk+1 = 0.75µk

20: else
21: µk+1 = µk

22: end if
23: end while
24: Start the Standard ADMM with the initial point (Y k, Zk)

where µ > 0 and LQ is given by (3.2), and the augmented Lagrangian func-
tion LBQAP

ρ (R, Y, Z) is defined by (4.3). From the definition (3.4) of I(Y ),
I(Y ) is the indicator function for an affine space, and hence, we can see that
Assumption 1 holds for Centering ADMM. Thus, if Assumption 2 holds, i.e.,

the unaugmented Lagrangian function LBQAP
0 (R, Y, Z) has a saddle point, then

Centering ADMM (with no update of ρ , i.e., ρk = ρ > 0 for every k = 0, 1, . . .)
has global convergence properties. In what follows, we show that the function

LBQAP
0 (R, Y, Z) has a saddle point (Proposition 5.1).
The Karush-Khun-Tucker conditions of BQAPR2 (4.1) turn out to be

V̂ T (LQ +A)V̂ R = µI,

GJ(V̂ RV̂ T ) = E00,
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A ∈ Sn2+1
J ,

R ⪰ O,

V̂ T (LQ +A)V̂ ⪰ O,

where

(5.1) Sn2+1
J = {X ∈ Sn2+1 | GJ(X) = X},

and by setting A = −(LQ + Z), we obtain the following system:

(−V̂ TZV̂ )R = µI,(5.2)

GJ(V̂ RV̂ T ) = E00,(5.3)

−(LQ + Z) ∈ Sn2+1
J ,(5.4)

R ⪰ 0,(5.5)

−V̂ TZV̂ ⪰ O.(5.6)

For any fixed µ > 0, the objective function of problem BQAPR2 is strictly
convex, and hence the above system has a unique solution. Proposition 5.1

guarantees that the solution is a saddle point of the function LBQAP
0 (R, Y, Z).

Proposition 5.1. For any fixed µ > 0, the unique solution (R∗, Z∗) of the
system (5.2)-(5.6) satisfies

max
Z

LBQAP
0 (R∗, Y ∗, Z) = LBQAP

0 (R∗, Y ∗, Z∗) = min
R,Y

LBQAP
0 (R, Y, Z∗),

where Y ∗ = V̂ R∗V̂ T . That is, (R∗, Y ∗, Z∗) is a saddle point of the function

LBQAP
0 (R, Y, Z).

Proof. From the definition (3.4) of I(Y ), (5.3) and setting Y ∗ = V̂ R∗V̂ T , we
can easily see that

max
Z

LBQAP
0 (R∗, Y ∗, Z)

= max
Z

{
⟨LQ, Y

∗⟩+ I(Y ∗)− µlog(det(R∗)) + ⟨Z, (Y ∗ − V̂ R∗V̂ T )⟩
}

= max
Z

{⟨LQ, Y
∗⟩ − µlog(det(R∗))}

= LBQAP
0 (R∗, Y ∗, Z∗).

Let us show that LBQAP
0 (R∗, Y ∗, Z∗) = minR,Y LBQAP

0 (R, Y, Z∗) holds. Before
doing so, we define the set Y as follows:

(5.7) Y := {Y ∈ Sn2+1 | GJ(Y ) = E00}.
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Then, from the definition (3.4) of I(Y ), we see that

min
R,Y

LBQAP
0 (R, Y, Z∗)

= min
R,Y

{
⟨LQ, Y ⟩+ I(Y )− µlog(det(R)) + ⟨Z∗, (Y − V̂ RV̂ T )⟩

}
= min

R,Y

{
⟨LQ + Z∗, Y ⟩+ I(Y )− µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩

}
= min

Y
{⟨LQ + Z∗, Y ⟩+ I(Y )}

+min
R

{
−µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩

}
= min

Y ∈Y
{⟨LQ + Z∗, Y ⟩}+min

R

{
−µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩

}
.(5.8)

Since Z∗ satisfiers (5.4), the definition (5.1) of Sn2+1
J , the definition (3.1) of

GJ(·), and the definition (5.7) of Y imply that

min
Y ∈Y

{⟨LQ + Z∗, Y ⟩} = min
Y ∈Y

{⟨GJ(LQ + Z∗), Y ⟩}

= min
Y ∈Y

{⟨LQ + Z∗,GJ(Y )⟩}

= min
Y ∈Y

{⟨LQ + Z∗, E00⟩}

= ⟨LQ + Z∗, E00⟩.(5.9)

For any fixed µ > 0, the function −µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩ is strictly
convex at any R ≻ O, and the second term of (5.8) has a unique minimum
solution R satisfying

−V̂ TZ∗V̂ − µR−1 = 0.

Thus, the fact that R∗ satisfies (5.2) implies that R∗ is the minimum solution
of the second term of (5.8) and we have

(5.10)
min
R

{
−µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩

}
= −µlog(det(R∗)) + ⟨Z∗,−V̂ R∗V̂ T ⟩.

Equations (5.8), (5.9), and (5.10) imply that

min
R,Y

LBQAP
0 (R, Y, Z∗) = min

Y ∈Y
{⟨LQ + Z∗, Y ⟩}

+min
R

{
−µlog(det(R)) + ⟨Z∗,−V̂ RV̂ T ⟩

}
= ⟨LQ + Z∗, E00⟩ − µlog(det(R∗)) + ⟨Z∗,−V̂ R∗V̂ T ⟩.(5.11)
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By a discussion similar to derive (5.9), we also see that

LBQAP
0 (R∗, Y ∗, Z∗) = ⟨LQ, Y

∗⟩+ I(Y ∗)− µlog(det(R∗))

+ ⟨Z∗, (Y ∗ − V̂ R∗V̂ T )⟩
= ⟨LQ + Z∗, Y ∗⟩ − µlog(det(R∗))

+ ⟨Z∗,−V̂ R∗V̂ T ⟩
= ⟨LQ + Z∗, E00⟩ − µlog(det(R∗))

+ ⟨Z∗,−V̂ R∗V̂ T ⟩.(5.12)

Therefore, (5.11) and (5.12) guarantee that LBQAP
0 (R∗, Y ∗, Z∗) =

minR,Y LBQAP
0 (R, Y, Z∗) holds. □

6. Numerical experiments

We conducted numerical experiments to examine the performance of Center-
ing ADMM in comparison with the Standard ADMM on the QAPLIB instances
with symmetric matrices in [2, 3]. We used MATLAB R2018b on an Intel (R)
Core (TM) i7-6700 CPU @ 3.40GHz 3.41GHz machine. For the sake of limiting
the computational time, we only dealt with instances of size n ≤ 40.

We set the initial points and the accuracy parameters of Centering ADMM
and the Standard ADMM, as

Y 0 = I, Z0 = −I, µ0 = 1, ρ0 = n, ϵr = 0.1

for all instances.
For both methods, we limited the number of iterations to 10000 and out-

putted the obtained lower bounds every 100 iterations. Figures 1 – 7 are plots
of the difference between the lower bounds obtained by the two methods, i.e.,
(the value of the lower bound obtained by Centering ADMM) - (the value of
the lower bound obtained by the Standard ADMM) every 100 iterations for
each class of instances.

The horizontal axis shows the number of iterations, and the vertical axis
shows the difference between the obtained lower bounds. If the difference is
positive (negative), it means that Centering ADMM (the Standard ADMM)
computes a better lower bound.

The results allow us to make the following observations for each class of
instances.

6.1. Observations for the class of “chr” instances (Figure 1). Except
for instance “hr25a,” the difference is positive when the number of iterations
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becomes larger than 1000, which implies that Centering ADMM obtains a bet-
ter lower bound than the Standard ADMM at each iteration for most instances
of this class.

6.2. Observations for the class of “Had” instances (Figure 2). For
“Had” instances, a significant increase in the lower bound occurs during the first
few iterations, and the Standard ADMM obtains better results than Centering
ADMM for every instance.

Figure 9 shows the results of solving “Had12” by using the Standard ADMM
as the difference between the lower bound and the optimal value every 100
iterations. We can see that the lower bound is sufficiently close to the optimal
value at 300 iterations.

Table 1 compares the results obtained by the Standard ADMM and those
obtained by Centering ADMM. The table lists the problem name (Prob.), its
optimal value (Opt.), and for each ADMM, the pair of the lower bound (LB)
and the number of iterations (#Iter) for which the difference from the optimum
value becomes less than or equal to 0.5.

In every case, the lower bound is sufficiently close to the optimal value within
2000 iterations, and this suggests that the centering effect is not required.

6.3. Observations for the class of “Kra” instances (Figure 3). The
difference is positive once the number of iterations becomes larger than 1100,
which implies that Centering ADMM obtains a better lower bound than the
Standard ADMM at each iteration for all instances of this class.

6.4. Observations for the classes of “Rou” and “Scr” instances (Fig-
ure 4). The difference is always positive, which implies that Centering ADMM
obtains a better lower bound than the Standard ADMM at each iteration for
all instances of these classes.

6.5. Observations for the class of “Nug” instances (Figure 6). Simi-
lary to the results for the “Had” instances, a significant increase in the lower
bound occurs at the beginning of the iterations for the “Nug” instances, and
the Standard ADMM obtains better results than Centering ADMM for every
instance. A difference from the results for the “Had” instances is that the up-
per bound is not attained at 10,000 iterations. At an early stage, the lower
bound increases rapidly to a certain value, but after that, the increase becomes
quite small.

Table 2 lists the differences between the lower bounds obtained by the Stan-
dard ADMM and by Centering ADMM. The table shows the problem name
(Prob.), the value at which the increase in the ratio of the differences starts to
slow down (Slow Down LB), the number of iterations at which the difference
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becomes less than or equal to 1 (Small Diff. #Iter.), and the lower bound
obtained by the Standard ADMM at 10000 iterations (LB at 10000 Iter.). We
omit the lower bound obtained by Centering ADMM since it is quite close to
the value of “LB at 10000 Iter.”

Table 3 compares the results obtained by the Standard ADMM and by
Centering ADMM. The table shows the problem name (Prob.), its optimal
value (Opt.), and for each ADMM, the pair of the lower bound (LB) and the
number of iterations for which the increase in the ratio of the lower bound
values starts to slow down (#Iter.).

Similarly to the results for the the “Had” instances, the lower bound is
sufficiently close to the optimal value within 3000 iterations, and this this
suggests that the centering effect is not required in any of the cases.

6.6. Observations for the class of “Tai-a” instances (Figure 7). Except
for instance “Tai35a,” Centering ADMM obtains a better lower bound than the
Standard ADMM at almost every iteration for all instances of this class.

6.7. Observations for the classes of “Els19” and “Tho30” instances
(Figure 8). For instance “Els19,” Centering ADMM obtains better lower
bounds than the Standard ADMM. For instance “Tho30,” the difference is
positive at almost every iterations. Thus, Centering ADMM is better than the
Standard ADMM for this instance as well.

7. Concluding remarks

We devised a new method for solving a semidefinite (SD) relaxation of
the quadratic assignment problem (QAP), called Centering ADMM. Centering
ADMM is an alternating direction method of multipliers (ADMM) combining
the centering steps used in the interior-point method. The first stage of Cen-
tering ADMM updates the iterate such that it approaches the central path
by incorporating a barrier function term in the objective function, as in the
interior-point method. If the current iterate is sufficiently close to the central
path with a sufficiently small value of the barrier parameter, the method then
proceeds to the Standard ADMM. We showed that Centering ADMM (not
employing a dynamic update of the penalty parameter) has global convergence
properties. To observe the effect of the centering steps, we conducted numerical
experiments with SD relaxation problems of the instances in QAPLIB [3]. The
results demonstrate that Centering ADMM is quite efficient for some instances,
e.g., all instances in “chr,” “Kra,” “Rou,” and “Scr”, and instances “Els19”
and “Tho30.”
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Our future research will include further discussions on convergence of Cen-
tering ADMM, providing a way of determining valid initial parameters, and an
extension of the method to general semidefinite programs.
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Figure 1. Results for “chr” instances
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Figure 2. Results for “Had” instances

Figure 3. Results for “Kra” instances

Figure 4. Results for “Rou” instances

Figure 5. Results for “Scr” instances
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Figure 6. Results for “Nug” instances
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Figure 7. Results for “Tai-a” instances

Figure 8. Results for “Els19” and “Tho30” instances
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Figure 9. Difference between the lower bounds for “Had12”

Table 1. Comparison of results for “Had” instances

Prob. Slow Down LB Small Diff. #Iter. LB at 10000 Iter.
Nug12 567 2000 567.99
Nug14 1009 2700 1010.11
Nug15 1140 3000 1140.56
Nug16a 1598 3200 1599.27
Nug16b 1217 2900 1218.25
Nug17 1706 3400 1707.10
Nug18 1892 3300 1893.53
Nug20 2505 4200 2506.33
Nug21 2380 5100 2381.89
Nug22 3525 8300 3528.53
Nug24 3399 5100 3401.05
Nug25 3624 5500 3625.85
Nug27 5125 9300 5129.36
Nug28 5023 7300 5025.56
Nug30 5947 8700 5949.43

Table 2. Comparison of results for “Nug” instances (1)
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Table 3. Comparison of results for “Nug” instances (2)
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