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Every firmly metrically nonspreading mapping is clearly metrically nonspread-
ing. In particular, nonspreadingness and metrical nonspreadingness naturally
coincide with each other in Hilbert spaces. It is well known that the classi-
cal resolvent which was proposed by Mayer [12] on CAT(0) spaces is firmly
metrically nonspreading.

The concepts of vicinal mappings and firmly vicinal mappings were proposed
by Kohsaka [9] on metric spaces. In a metric space X, a mapping T from X
into itself is said to be

• vicinal if

(L2
x(1 + L2

y) + L2
y(1 + L2

x)) cos d(Tx, Ty)

≧ L2
x(1 + L2

y) cos d(Tx, y) + L2
y(1 + L2

x) cos d(x, Ty)

for all x, y ∈ X;
• firmly vicinal if

(L2
x(1 + L2

y)Ly + L2
y(1 + L2

x)Lx) cos d(Tx, Ty)

≧ L2
x(1 + L2

y) cos d(Tx, y) + L2
y(1 + L2

x) cos d(x, Ty)

for all x, y ∈ X,

where Lz = cos d(Tz, z) for all z ∈ X. If a metric spaceX satisfies d(u, v) < π/2
for all u, v ∈ X, then every firmly vicinal mapping is vicinal. It is known that
the resolvent which was proposed by Kimura and Kohsaka [5] on CAT(1) spaces
is firmly vicinal.

The authors [3] proposed spherically vicinal mappings with η and firmly
spherically vicinal mappings with η on admissible CAT(1) spaces. In an ad-
missible CAT(1) space X, a mapping T from X into itself is said to be

• spherically vicinal with η if

(η′(Lx) + η′(Ly)) cos d(Tx, Ty)

≦ η′(Ly) cos d(Tx, y) + η′(Lx) cos d(Ty, x)

for all x, y ∈ X;
• firmly spherically vicinal with η if

(η′(Lx)Lx + η′(Ly)Ly) cos d(Tx, Ty)

≦ η′(Ly) cos d(Tx, y) + η′(Lx) cos d(Ty, x)

for all x, y ∈ X,

where Lz = cos d(Tz, z) for all z ∈ X and η is a function from ]0, 1] into [0,∞[
satisfying η is differentiable, η′ is continuous at 1, and η′(t) < 0 for all t ∈ ]0, 1].
Since X is an admissible CAT(1) space, every firmly spherically nonspreading
mapping with η is obviously spherically nonspreading with η. They showed that
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every firmly vicinal mapping on admissible CAT(1) spaces is firmly spherically
vicinal with η : t 7→ 1/t − t and also showed that the resolvent which was
proposed by themselves [4] on CAT(1) spaces is firmly spherically vicinal with
η : t 7→ − log t.

In this paper, we propose vicinal mappings with φ and firmly vicinal map-
pings with φ on CAT(κ) spaces and show that both firmly metrically non-
spreading mappings on CAT(0) spaces and firmly spherically vicinal mappings
with ψ are examples of vicinal mappings with φ. We also show fundamental
properties and an approximation theorem to a fixed point for those mappings.

2. Preliminaries

Let X be a metric space. We denote the set of all fixed points of a mapping
T from X into itself by F(T ) and the set of all minimizers of a function f from
X into ]−∞,∞] by argminx∈Xf(x), respectively. An asymptotic center of a
sequence {xn} of X is defined by the set{

u ∈ X

∣∣∣∣ lim sup
n→∞

d(u, xn) = inf
y∈X

lim sup
n→∞

d(y, xn)

}
,

and we denote it by A({xn}). {xn} is ∆-convergent to x0 ∈ X which is denoted

by xn
∆
⇀ x0 if A({xni}) = {x0} for all subsequences {xni} of {xn}, and we

refer to x0 as ∆-limit of {xn}. A mapping T form X into itself is said to be

• quasi-nonexpansive if F(T ) is nonempty and d(Tx, p) ≦ d(x, p) for all
x ∈ X and p ∈ F(T );

• asymptotically regular if limn→∞ d(Tn+1x, Tnx) = 0 for all x ∈ X;
• ∆-demiclosed if p belongs to F(T ) whenever a sequence {xn} of X

satisfies xn
∆
⇀ p ∈ X and limn→∞ d(Txn, xn) = 0.

For D ∈ ]0,∞], a metric space X is called a D-geodesic space if for each
x, y ∈ X with d(x, y) < D, there exists a mapping γxy from [0, ℓ] into X
satisfying γxy(0) = x, γxy(ℓ) = y, and d(γxy(s), γxy(t)) = |s− t| for all s, t ∈
[0, ℓ], where ℓ = d(x, y). We refer to γxy as a geodesic joining x and y. We
denote the image of γxy by Imγxy, that is, Imγxy = {γ(s) | s ∈ [0, ℓ]}. In this
paper, we assume the uniqueness of Imγxy for any two points x and y in D-
geodesic spaces. Let X be a D-geodesic space. For each x, y ∈ X and t ∈ [0, 1],
there exists a unique element z ∈ X such that d(x, z) = (1 − t)d(x, y), and
we denote it by z = tx ⊕ (1 − t)y. Such an element z ∈ X is called a convex
combination between x and y. For each x, y, z ∈ X, the set 4(x, y, z) =
Imγxy ∪ Imγyz ∪ Imγzx is called a geodesic triangle. A function f from X into
]−∞,∞] is said to be convex if f(tx ⊕ (1 − t)y) ≦ tf(x) + (1 − t)f(y) for all
x, y ∈ X and t ∈ ]0, 1[.
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Let X be a D-geodesic space. For κ ∈ R, a two-dimensional model space of
X with curvature κ is defined by

M2
κ =


1√
κ
S2 (κ > 0);

R2 (κ = 0);
1√
−κ

H2 (κ < 0),

where S2 is the two-dimensional unit sphere in R3, andH2 is the two-dimensional
hyperbolic space. We denote the diameter ofM2

κ byDκ, that is, Dκ = π/
√
κ for

all κ > 0 and Dκ = ∞ for all κ ≦ 0. It is well known that M2
κ is a Dκ-geodesic

space. For each 4(x, y, z) ⊂ X satisfying d(x, y) + d(y, z) + d(z, x) < 2Dκ, a
comparison triangle of 4(x, y, z) is defined by the set 4(x̄, ȳ, z̄) ⊂M2

κ satisfy-
ing d(x, y) = d(x̄, ȳ), d(y, z) = d(ȳ, z̄), and d(z, x) = d(z̄, x̄), respectively. For
each p ∈ 4(x, y, z) ⊂ X, we call p̄ ∈ 4(x̄, ȳ, z̄) ⊂ M2

κ a comparison point of p
whenever at least one of the following conditions hold:

• if p ∈ Imγxy, then p̄ ∈ Imγx̄ȳ and d(x, p) = d(x̄, p̄);
• if p ∈ Imγyz, then p̄ ∈ Imγȳz̄ and d(y, p) = d(ȳ, p̄);
• if p ∈ Imγzx, then p̄ ∈ Imγz̄x̄ and d(z, p) = d(z̄, p̄).

A D-geodesic space X is called a CAT(κ) space if d(p, q) ≦ d(p̄, q̄) for all
x, y, z ∈ X and p, q ∈ 4(x, y, z), where p̄ and q̄ are the comparison points of
p and q, respectively. A CAT(κ) space X is said to be admissible if d(x, y) <
Dκ/2 for all x, y ∈ X. In CAT(κ) spaces, the following inequalities are well
known. See [2, 7] for example.

Lemma 2.1. For κ ∈ {1, 0,−1}, let X be a CAT(κ) space and x, y, z ∈ X
satisfying d(x, y) + d(y, z) + d(z, x) < 2Dκ. Then the following inequalities
hold:

• if κ = 1, then

cos d(tx⊕ (1− t)y, z) sin d(x, y)

≧ cos d(x, z) sin(td(x, y)) + cos d(y, z) sin((1− t)d(x, y));

• if κ = 0, then

d(tx⊕ (1− t)y, z)2 ≦ td(x, z)2 + (1− t)d(y, z)2 − t(1− t)d(x, y)2;

• if κ = −1, then

cosh d(tx⊕ (1− t)y, z) sinh d(x, y)

≦ cosh d(x, z) sinh(td(x, y)) + cosh d(y, z) sinh((1− t)d(x, y)).

By using the properties of the functions cosine and hyperbolic cosine, it is
easy to check that these inequalities are equivalent to the following inequalities.
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Corollary 2.2. For κ ∈ {1, 0,−1}, let X be a CAT(κ) space and x, y, z ∈ X
satisfying d(x, y)+d(y, z)+d(z, x) < 2Dκ. Then the following inequalities hold:

• if κ = 1, then

(1− cos d(tx⊕ (1− t)y, z)) sin d(x, y)

≦ (1− cos d(x, z)) sin(td(x, y)) + (1− cos d(y, z)) sin((1− t)d(x, y))

− 4 sin(d(x, y)/2) sin(td(x, y)/2) sin((1− t)d(x, y)/2);

• if κ = 0, then

d(tx⊕ (1− t)y, z)2 ≦ td(x, z)2 + (1− t)d(y, z)2 − t(1− t)d(x, y)2;

• if κ = −1, then

(cosh d(tx⊕ (1− t)y, z)− 1) sinh d(x, y)

≦ (cosh d(x, z)− 1) sinh(td(x, y)) + (cosh d(y, z)− 1) sinh((1− t)d(x, y))

− 4 sinh(d(x, y)/2) sinh(td(x, y)/2) sinh((1− t)d(x, y)/2).

Let κ ∈ R and X a CAT(κ) space. For D ∈ ]0,∞], a sequence {xn} of X is
said to be D-bounded if {xn} satisfies

inf
y∈X

lim sup
n→∞

d(xn, y) < D.

The following fundamental properties are well known.

Lemma 2.3 ([1, 8]). Let κ ∈ R, X an admissible CAT(κ) space and {xn} a
Dκ/2-bounded sequence of X. Then A({xn}) consists of one point, and {xn}
has a ∆-convergent subsequence.

Lemma 2.4 ([6]). Let κ ∈ R, X an admissible CAT(κ) space and {xn} a
Dκ/2-bounded sequence of X. If {d(xn, z)} is convergent for each ∆-limit z of
subsequences of {xn}, then {xn} is ∆-convergent to an element of X.

3. A function cκ

In this section, we introduce a function cκ which plays an important role in
this paper and we show fundamental properties of the function. For κ ∈ R, we
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define a function cκ from
[
0, Dκ/2

]
into [0,∞] by

cκ(t) =
t2

2
− κt4

24
+
κ2t6

720
+ · · ·

=

∞∑
n=1

(−1)n−1κn−1t2n

(2n)!

=



1

κ
(1− cos (

√
κt)) (κ > 0);

1

2
t2 (κ = 0);

1

−κ
(
cosh

(√
−κt

)
− 1

)
(κ < 0),

for t ∈ [0, Dκ/2[ and cκ(Dκ/2) = limt↑Dκ/2 cκ(t). Then it follows that

c′κ(t) =



1√
κ
sin (

√
κt) (κ > 0);

t (κ = 0);

1√
−κ

sinh
(√

−κt
)

(κ < 0),

and that

c′′κ(t) =


cos (

√
κt) (κ > 0);

1 (κ = 0);

cosh
(√

−κt
)

(κ < 0)

for all t ∈ [0, Dκ/2[. We know that

• cκ is convex and increasing function with cκ(0) = 0;
• c′κ is an increasing function with c′κ(0) = 0;
• c′′κ(0) = 1.

We also know that

κcκ(t) + c′′κ(t) = 1

and

c′′κ(t)
2 + κc′κ(t)

2 = 1.
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The sum theorems are formulated as:

c′κ(s+ t) = c′κ(s)c
′′
κ(t) + c′′κ(s)c

′
κ(t),

c′κ(s− t) = c′κ(s)c
′′
κ(t)− c′′κ(s)c

′
κ(t),

c′′κ(s+ t) = c′′κ(s)c
′′
κ(t)− κc′κ(s)c

′
κ(t),

c′′κ(s− t) = c′′κ(s)c
′′
κ(t) + κc′κ(s)c

′
κ(t).

In particular, we have

c′κ(2t) = 2c′κ(t)c
′′
κ(t),

c′′κ(2t) = c′′κ(t)
2 − κc′κ(t)

2

= 1− 2κc′κ(t)
2

= 2κc′′κ(t)
2 − 1.

From the formulas above, we obtain the following:

c′κ(a) + c′κ(b) = 2c′κ

(
a+ b

2

)
c′′κ

(
a− b

2

)
,

c′κ(a)− c′κ(b) = 2c′′κ

(
a+ b

2

)
c′κ

(
a− b

2

)
,

c′′κ(a) + c′′κ(b) = 2c′′κ

(
a+ b

2

)
c′′κ

(
a− b

2

)
,

c′′κ(a)− c′′κ(b) = −2κc′κ

(
a+ b

2

)
c′κ

(
a− b

2

)
.

We also have

c′κ(s)c
′′
κ(t) =

1

2
(c′κ(s+ t) + c′κ(s− t)),

c′′κ(s)c
′
κ(t) =

1

2
(c′κ(s+ t)− c′κ(s− t)),

c′′κ(s)c
′′
κ(t) =

1

2
(c′′κ(s+ t) + c′′κ(s− t)),

−κc′κ(s)c′κ(t) =
1

2
(c′′κ(s+ t)− c′′κ(s− t)).

By using the function cκ and Corollary 2.2, we get the following lemma.
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Lemma 3.1. Let κ ∈ R, X a CAT(κ) space, x, y, z ∈ X satisfying d(x, y) +
d(y, z) + d(z, x) < Dκ and t ∈ [0, 1]. Then

cκ(d(tx⊕ (1− t)y, z))c′κ(d(x, y))

≦ cκ(d(x, z))c
′
κ(td(x, y)) + cκ(d(y, z))c

′
κ(d(x, y))

− 4c′κ(d(x, y)/2)c
′
κ(td(x, y)/2)c

′
κ((1− t)d(x, y)/2).

4. Vicinal mappings with φ on CAT(κ) spaces

Let X be an admissible CAT(κ) spaces, T a mapping from X into itself and
ψ a function from [0,∞[ into ]0,∞[, which is continuous at 0. T is said to be

• vicinal with ψ if

(ψ(d(Tx, x)) + ψ(d(Ty, y))) cκ(d(Tx, Ty))

≦ ψ(d(Ty, y))cκ(d(Tx, y)) + ψ(d(Tx, x))cκ(d(x, Ty))

for all x, y ∈ X;
• firmly vicinal with ψ if

(ψ(d(Tx, x))cκ(d(Tx, x)) + ψ(d(Ty, y))cκ(d(Ty, y)))c
′′
κ(d(Tx, Ty))

+ (ψ(d(Tx, x)) + ψ(d(Ty, y))) cκ(d(Tx, Ty))

≦ ψ(d(Ty, y))cκ(d(Tx, y)) + ψ(d(Tx, x))cκ(d(x, Ty))

for all x, y ∈ X.

It is clear that every firmly vicinal mapping with ψ is vicinal with ψ. We first
show the following important theorem. In what follows, we assume that ψ is a
function from [0,∞[ into ]0,∞[, which is continuous at 0.

Theorem 4.1. Let X be an admissible CAT(κ) space, f a convex function
from X into ]−∞,∞] and φ an increasing and differentiable function from
[0, cκ(Dκ/2)[ into [0,∞[, and suppose that φ′ is continuous. If

Tx = argmin
y∈X

{f(y) + φ(cκ(d(y, x)))}

is a single-valued mapping, then

(φ′(Kx)Kx + φ′(Ky)Ky)c
′′
κ(d(Tx, Ty)) + (φ′(Kx) + φ′(Ky)) cκ(d(Tx, Ty))

≦ φ′(Ky)cκ(d(Tx, y)) + φ′(Kx)cκ(d(x, Ty))

for all x, y ∈ X, where Kz = cκ(d(Tz, z)) for all z ∈ X.
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Proof. Let x, y ∈ X satisfying Tx 6= Ty, and put zt = tTx ⊕ (1 − t)Ty for all
t ∈ ]0, 1[. By the definition of T and convexity of f , we have

f(Ty) + φ(Ky) ≦ f(zt) + φ(cκ(d(zt, y)))

≦ tf(Tx) + (1− t)f(Ty) + φ(cκ(d(zt, y)))

and hence

t(f(Ty)− f(Tx)) ≦ φ(cκ(d(zt, y)))− φ(Ky).

Dividing by t and using the Lemma 3.1, we get

f(Ty)− f(Tx)

≦ 1

t
(φ(cκ(d(zt, y)))− φ(Ky))

≦ 1

t

φ
cκ(d(Tx, y))c

′
κ(tD) +Kyc

′
κ((1− t)D)− 4c′κ

(
D
2

)
c′κ

(
tD
2

)
c′κ

(
(1−t)D

2

)
c′κ(D)


− φ(Ky)

)
,

where D = d(Tx, Ty). Taking the limit as t tends to 0 and using l’Hospital’s
rule, we have

f(Ty)− f(Tx) ≦ φ′(Ky)
(
cκ(d(Tx, y))−Kyc

′′
κ(D)− 2c′κ(D/2)

2
) D

c′κ(D)

= φ′(Ky)(cκ(d(Tx, y))−Kyc
′′
κ(D)− cκ(D))

D

c′κ(D)
.

Since x and y are arbitrary, we also get

f(Tx)− f(Ty) ≦ φ′(Kx)(cκ(d(x, Ty))−Kxc
′′
κ(D)− cκ(D))

D

c′κ(D)
.

Adding each side of these inequalities, we get the conclusion. In the case that
Tx = Ty, we clearly obtain the conclusion. □

By Theorem 4.1, the resolvent Rf which was proposed by the authors [2] is
firmly vicinal mapping with ψ. In fact, we define a function φ : [0,∞[ → [0,∞[

φ(t) = t+ 1− 1

t+ 1
.

Since tanh a sinh a = cosh a− 1/ cosh a for all a ∈ R, we can express

Rfx = argmin
y∈X

{f(y) + φ(cosh d(y, x))}
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for each x ∈ X, and we know that Rf is a single-valued mapping. It is obvious
that the function φ is differentiable and

φ′(t) = 1 +
1

(t+ 1)2
> 0

for all t ∈ [0,∞[. Therefore, it follows from Theorem 4.1 that

(φ′(Cx))Cx + φ′(Cy)Cy)c
′′
κ(d(Tx, Ty)) + (φ′(Cx) + φ′(Cy)) cκ(d(Tx, Ty))

≦ φ′(Cy)cκ(d(Tx, y)) + φ′(Cx)cκ(d(x, Ty))

for all x, y ∈ X, where Cz = cosh d(Rfz, z) for all z ∈ X. We also know that

ψ(s) = 1 +
1

(cosh s+ 1)2

is continuous at 0. Thus Rf is firmly vicinal with ψ.
We remark that every firmly metrically nonspreading mapping on CAT(0)

spaces is firmly vicinal with a positive constant function. In fact, in the case
that κ = 0 and ψ(t) = K, the inequality of firm vicinality with ψ becomes

Kd(Tx, x)2 +Kd(Ty, y)2 + 2Kd(Tx, Ty)2 ≦ Kd(Tx, y)2 +Kd(x, Ty)2,

where K is a positive constant in R. Thus every firmly metrically nonspread-
ing mapping is vicinal with a positive constant function. Also, every metrically
nonspreading, spherically nonspreading mapping of sum-type, and hyperbol-
ically nonspreading mapping is vicinal with a positive constant function. In
fact, in the case that ψ(t) = K, the inequality of vicinality with ψ becomes

2K cos d(Tx, Ty) ≧ K cos d(Tx, y) +K cos d(x, Ty) (κ = 1);

2Kd(Tx, Ty)2 ≦ Kd(Tx, y)2 +Kd(x, Ty)2 (κ = 0);

2K cosh d(Tx, Ty) ≦ K cosh d(Tx, y) +K cosh d(x, Ty) (κ = −1),

where K is a positive constant in R. Thus every metrically nonspreading,
spherically nonspreading mapping of sum-type, and hyperbolically nonspread-
ing mapping is vicinal with a positive constant function. We next show funda-
mental properties of firmly vicinal mappings with ψ.

Theorem 4.2. Let X be an admissible CAT(κ) space and T a vicinal mapping
with ψ from X into itself. If F(T ) is nonempty, then T is quasi-nonexpansive.

Proof. Let x ∈ X and p ∈ F(T ). Then the vicinality with ψ of T implies that

(ψ(d(Tx, x)) + ψ(0))cκ(d(Tx, p))

≦ ψ(0)cκ(d(Tx, p)) + ψ(d(Tx, x))cκ(d(x, p))

and hence

ψ(d(Tx, x))cκ(d(Tx, p)) ≦ ψ(d(Tx, x))cκ(d(x, p)).
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Since ψ(d(Tx, x)) ∈ ]0,∞[, we have

cκ(d(Tx, p)) ≦ cκ(d(x, p))

and hence

d(Tx, p) ≦ d(x, p).

Therefore T is quasi-nonexpansive. □

Theorem 4.3. Let X be an admissible CAT(κ) space, T a vicinal mapping with
ψ from X into itself and p ∈ X. If a sequence {xn} of X satisfies A({xn}) =
{p} and limn→∞ d(Txn, xn) = 0, then p is a fixed point of T .

Proof. Let {xn} be a sequence ofX satisfyingA({xn}) = {p} and d(Txn, xn) →
0 as n→ ∞. The vicinality with ψ of T implies that

cκ(d(Txn, Tp))

≦ cκ(d(Txn, p)) +
ψ(d(Txn, xn))

ψ(d(Tp, p))
(cκ(d(Txn, Tp))− cκ(d(xn, Tp))).

On the other hand, since A({xn}) = {p}, we know that {xn} is bounded.
Since d(Txn, xn) → 0, {Txn} is also bounded, and it follows that
|d(Txn, Tp)− d(xn, Tp)| → 0. We also know that the function cκ is uniformly
continuous on a bounded set. Therefore, using the boundedness of those se-
quences and continuity of φ at 0, we get

lim sup
n→∞

cκ(d(Txn, Tp)) ≦ lim sup
n→∞

cκ(d(Txn, p))

and hence

lim sup
n→∞

d(Txn, Tp) ≦ lim sup
n→∞

d(Txn, p).

Since A({xn}) = {p}, we get p ∈ F(T ). □

Corollary 4.4. Let X be an admissible CAT(κ) space. Then, every vicinal
mapping with ψ from X into itself is ∆-demiclosed.

Proof. Let {xn} be a sequence of X satisfying xn
∆
⇀ p and d(Txn, xn) → 0.

By the definition of ∆-convergence, we know that A({xn}) = {p}. Therefore,
by Theorem 4.3, p is a fixed point of T . Thus we get the conclusion. □

Theorem 4.5. Let X be an admissible CAT(κ) space and T a firmly vicinal
mapping with ψ from X into itself. If F(T ) is nonempty, then T is asymptot-
ically regular.
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Proof. Let x ∈ X and p ∈ F(T ). The firm vicinalty with ψ of T implies that

(ψ(d(Tn+1x, Tnx))cκ(d(T
n+1x, Tnx)) + ψ(0)cκ(0))c

′′
κ(d(T

n+1x, p))

+ (ψ(d(Tn+1x, Tnx)) + ψ(0))cκ(d(T
n+1x, p))

≦ ψ(0)cκ(d(T
n+1x, p)) + ψ(d(Tn+1x, Tnx))cκ(d(T

nx, p))

and hence

ψ(d(Tn+1x, Tnx))cκ(d(T
n+1x, Tnx))c′′κ(d(T

n+1x, p))

≦ ψ(d(Tn+1x, Tnx))cκ(d(T
nx, p))− ψ(d(Tn+1x, Tnx))cκ(d(T

n+1x, p)).

Since ψ(d(Tn+1x, Tnx)) ∈ ]0,∞[ and c′′κ(d(T
n+1x, p)) ∈ ]0,∞[, we get

cκ(d(T
n+1x, Tnx)) ≦ cκ(d(T

nx, p))− cκ(d(T
n+1x, p))

c′′κ(d(T
n+1x, p))

.

On the other hand, it follows from Theorem 4.2 that

0 ≦ d(Tnx, p) ≦ d(Tn−1x, p) ≦ · · · ≦ d(x, p) <
Dκ

2
.

Thus there exists a ∈ [0, Dκ/2[ such that d(Tnx, p) → a. Therefore, it follows
that

0 ≦ cκ(d(T
n+1x, Tnx)) ≦ cκ(d(T

nx, p))− cκ(d(T
n+1x, p))

c′′κ(d(T
n+1x, p))

→ 0

and hence d(Tn+1x, Tnx) → 0. Thus T is asymptotically regular. □

Using Theorems 4.2, 4.4, and 4.5, we next show the following convergence
theorem.

Theorem 4.6. Let X be an admissible complete CAT(κ) space and T a firmly
vicinal mapping with ψ from X into itself. If F(T ) is nonempty, then {Tnx}
is ∆-convergent to an element of F(T ).

Proof. Let x ∈ X. It follows from Theorem 4.2 that

inf
y∈X

lim sup
n→∞

d(Tnx, y) ≦ inf
y∈F(T )

lim sup
n→∞

d(Tnx, y) ≦ inf
y∈F(T )

d(x, y) <
π

2
.

Therefore, by using Lemma 2.3, {Tnx} has a ∆-convergent subsequence. Let

{Tnix} be a subsequence of {Tnx} satisfying Tnix
∆
⇀ z. Using Theorem 4.5,

we get

lim
n→∞

d(T (Tnx), Tnx) = lim
n→∞

d(Tn+1x, Tnx) = 0.

Thus Corollary 4.4 implies that z ∈ F(T ). It follows from Theorem 4.2 that

0 ≦ d(Tnx, z) ≦ d(Tn−1x, z) ≦ · · · ≦ d(x, y) <
π

2
.
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Therefore {d(Tnx, z)} is convergent. Hence, by Lemma 2.4, {Tnx} is ∆-
convergent to an element of X. From Corollary 4.4 and Theorem 4.5, the
∆-limit of {Tnx} belongs to F(T ). □
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[1] R. Esṕınola and A. Fernández-León, CAT(κ)-spaces, weak convergence and fixed points,

J. Math. Anal. Appl. 65 (2006), 762–772.
[2] T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic spaces

with negative curvature, J. Fixed Point Theory Appl. 21 (2019).

[3] T. Kajimura and Y. Kimura, A spherically vicinal mapping on geodesic spaces with
curvature bounded above, Thai J. Math. 18 (2020), 384–393.

[4] T. Kajimura and Y. Kimura, A new definition of resolvents on complete geodesic spaces,
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