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A VICINAL MAPPING ON GEODESIC SPACES

TAKUTO KAJIMURA AND YASUNORI KIMURA

ABSTRACT. Kohsaka proposed the concept of vicinal mapping on geodesic
spaces with curvature bounded above. He also showed its fundamental
properties and a fixed point theorem. On the other hand, the authors
proposed a new notion of spherically vicinal mappings containing the
original one. They also showed its fundamental properties. In this paper,
we propose a new concept of vicinal mappings on geodesic spaces and
show its fundamental properties. We also show a convergence theorem to
its fixed point.

1. INTRODUCTION

Kohsaka and Takahashi [11] proposed the concept of nonspreading mappings
on smooth Banach spaces. In a smooth Banach space E, a mapping 1" from F
into itself is said to be nonspreading if

¢(Tz, Ty) + ¢(Ty, Tz) = ¢(Tx,y) + ¢(Ty, x)

for all z,y € E, where ¢(u,v) = |lu]|® — 2 (u, Jv) + [[v|* for all u,v € E and J
is the duality mapping from E into E*. On the other hand, Kohsaka [10] pro-
posed the concept of metrically nonspreading mappings and firmly metrically
nonspreading mappings on metric spaces. In a metric space X, a mapping T’
from X into itself is said to be

e metrically nonspreading if
2d(Tx, Ty)* < d(Tx,y)* + d(Ty, x)?

for all x,y € X;
e firmly metrically nonspreading if

d(Tz,x)* + d(Ty,y)* + 2d(Tx, Ty)* < d(Tx,y)* + d(Ty, )
for all z,y € X.
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Every firmly metrically nonspreading mapping is clearly metrically nonspread-
ing. In particular, nonspreadingness and metrical nonspreadingness naturally
coincide with each other in Hilbert spaces. It is well known that the classi-
cal resolvent which was proposed by Mayer [12] on CAT(0) spaces is firmly
metrically nonspreading.

The concepts of vicinal mappings and firmly vicinal mappings were proposed
by Kohsaka [9] on metric spaces. In a metric space X, a mapping T from X
into itself is said to be

e vicinal if
(LE(1+ L)+ L2 (1+ L2)) cos d(Tx, Ty)
> L2(1+ Li) cosd(Tz,y) + Li(l + L2) cosd(x, Ty)

for all z,y € X;
e firmly vicinal if
(L3(1+ L)Ly + LZ(1 + L2)Ly) cosd(Txz, Ty)
2 2 2 2
= Ly(1+ L) cosd(Tx,y) + L, (1+ L) cosd(x, Ty)
for all z,y € X,
where L, = cosd(Tz, z) for all z € X. If a metric space X satisfies d(u,v) < 7/2
for all u,v € X, then every firmly vicinal mapping is vicinal. It is known that
the resolvent which was proposed by Kimura and Kohsaka [5] on CAT(1) spaces
is firmly vicinal.

The authors [3] proposed spherically vicinal mappings with # and firmly
spherically vicinal mappings with 7 on admissible CAT(1) spaces. In an ad-
missible CAT(1) space X, a mapping T from X into itself is said to be

e spherically vicinal with # if
(' (Lz) + 77/(Ly)> cosd(Tz, Ty)
= 7' (Ly) cosd(Tx,y) +1'(Lz) cos d(Ty, x)

for all z,y € X;
e firmly spherically vicinal with » if
(n'(Ls) Ly + n/(Ly)Ly) cosd(Tz,Ty)
< /' (Ly) cosd(Tw,y) + 1/ (Ls) cos d(Ty, )
for all z,y € X,

where L, = cosd(T'z, z) for all z € X and 7 is a function from ]0, 1] into [0, o]
satisfying 7 is differentiable, 7’ is continuous at 1, and /() < 0 for all ¢ € |0, 1].
Since X is an admissible CAT(1) space, every firmly spherically nonspreading
mapping with 7 is obviously spherically nonspreading with 7. They showed that
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every firmly vicinal mapping on admissible CAT(1) spaces is firmly spherically
vicinal with 7: ¢ — 1/t — ¢ and also showed that the resolvent which was
proposed by themselves [4] on CAT(1) spaces is firmly spherically vicinal with
n:t+— —logt.

In this paper, we propose vicinal mappings with ¢ and firmly vicinal map-
pings with ¢ on CAT(k) spaces and show that both firmly metrically non-
spreading mappings on CAT(0) spaces and firmly spherically vicinal mappings
with i are examples of vicinal mappings with ¢. We also show fundamental
properties and an approximation theorem to a fixed point for those mappings.

2. PRELIMINARIES

Let X be a metric space. We denote the set of all fixed points of a mapping
T from X into itself by F(7') and the set of all minimizers of a function f from
X into ]—o0, 00| by argmin,cx f(x), respectively. An asymptotic center of a
sequence {x,} of X is defined by the set

{UGX

and we denote it by A({x,}). {z,} is A-convergent to zo € X which is denoted

limsup d(u, z,) = inf limsup d(y,xn)},

n—00 y€X n—oo

by z, A g if A({xn,}) = {xo} for all subsequences {x,,} of {z,}, and we
refer to zg as A-limit of {x,,}. A mapping T form X into itself is said to be
e quasi-nonexpansive if F(7T') is nonempty and d(T'z,p) < d(z, p) for all
z € X and p € F(T);
e asymptotically regular if lim,, ., d(T" 1z, T"z) = 0 for all z € X;
e A-demiclosed if p belongs to F(T) whenever a sequence {z,} of X
satisfies 2, = p € X and limy, o0 d(Tp, 2,) = 0.

For D € ]0,00], a metric space X is called a D-geodesic space if for each
z,y € X with d(z,y) < D, there exists a mapping 74, from [0,¢] into X
satisfying vy (0) = 2, Yay(¢) = vy, and d(Vay(s), Vay(t)) = |s —t| for all s,t €
[0,4], where ¢ = d(x,y). We refer to 7., as a geodesic joining = and y. We
denote the image of v, by Imv,,, that is, Imy,, = {v(s) | s € [0,£]}. In this
paper, we assume the uniqueness of Imvy,, for any two points  and y in D-
geodesic spaces. Let X be a D-geodesic space. For each z,y € X and ¢ € [0, 1],
there exists a unique element z € X such that d(z,z) = (1 — t)d(z,y), and
we denote it by z = tx @ (1 — t)y. Such an element z € X is called a convex
combination between z and y. For each z,y,z € X, the set A(z,y,2) =
Im~yzy U Imy,, UImy,, is called a geodesic triangle. A function f from X into
|—00, 0] is said to be convex if f(tz & (1 —t)y) < tf(x) + (1 —t)f(y) for all
z,y € X and ¢t €]0,1[.
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Let X be a D-geodesic space. For k € R, a two-dimensional model space of
X with curvature « is defined by

1

—=S? (k> 0);

VE ’

M? = { R2 (k= 0);
1

\/—7/1H2 (k <0),

where S? is the two-dimensional unit sphere in R3, and H? is the two-dimensional
hyperbolic space. We denote the diameter of M2 by D,,, that is, D, = 7/+/k for
all k > 0 and D, = oo for all K £ 0. It is well known that M,f is a D,-geodesic
space. For each A(z,y,2) C X satisfying d(z,y) + d(y,z) + d(z,z) < 2D,;, a
comparison triangle of A(z,y, z) is defined by the set A(Z,¥,%) C M2 satisfy-
ing d(z,y) = d(z,9), dy, z) = d(¥, Z), and d(z,x) = d(z, ), respectively. For
each p € A(x,y,2) C X, we call p € A(%,7,%) C M2 a comparison point of p
whenever at least one of the following conditions hold:

o if p € Imvy,,, then p € Imyz; and d(x,p) = d(Z,p);

o if p € Imvy,,, then p € Imyz and d(y,p) = d(¥,D);

e if p € Im~y,,, then p € Imvy;;z and d(z,p) = d(Z, p).
A D-geodesic space X is called a CAT(k) space if d(p,q) < d(p,q) for all
x,y,z € X and p,q € A(x,y,z), where p and ¢ are the comparison points of
p and ¢, respectively. A CAT(k) space X is said to be admissible if d(x,y) <
D, /2 for all z,y € X. In CAT(k) spaces, the following inequalities are well
known. See [2, 7] for example.

Lemma 2.1. For x € {1,0,—1}, let X be a CAT(k) space and z,y,z € X
satisfying d(x,y) + d(y,z) + d(z,x2) < 2D,. Then the following inequalities
hold:

o if k=1, then
cosd(tx ® (1 — t)y, z) sind(z,y)
2 cosd(x, z) sin(td(z,y)) + cosd(y, z) sin((1 — t)d(z,v));
o if k=0, then
d(tr @ (1 —t)y,2)* S td(x, 2)? + (1 — t)d(y, 2)* — t(1 — t)d(z,y)?;
e if k=—1, then
coshd(tx @ (1 — t)y, z) sinh d(z,y)
< coshd(z, z) sinh(td(z, y)) + cosh d(y, z) sinh((1 — t)d(x, y)).

By using the properties of the functions cosine and hyperbolic cosine, it is
easy to check that these inequalities are equivalent to the following inequalities.
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Corollary 2.2. For k € {1,0,—1}, let X be a CAT (k) space and x,y,z € X
satisfying d(x,y)+d(y, z) +d(z,x) < 2D,. Then the following inequalities hold:
o if k=1, then
(1 —cosd(tx @ (1 —t)y,2))sind(z,y)
< (1 —cosd(z, 2)) sin(td(z, y)) + (1 — cosd(y, z)) sin((1 — t)d(z,y))
~ asin(d(z, y)/2) sin(td(z, y),/2) sin((1 — t)d(z,4),/2);

o if Kk =0, then
d(te © (1 —t)y,2)* < td(z,2)* + (1~ t)d(y, 2)* — t(1 — t)d(z,y)*:
e if Kk =—1, then

(coshd(tx ® (1 — t)y, z) — 1) sinh d(z,y)
< (coshd(z, z) — 1) sinh(td(x, y)) + (coshd(y, z) — 1) sinh((1 — t)d(z,y))
— 4sinh(d(z,y)/2) sinh(td(x, y)/2) sinh((1 — t)d(x, y)/2).

Let k € R and X a CAT(k) space. For D € ]0, cc], a sequence {z,} of X is
said to be D-bounded if {z,} satisfies

inf limsup d(z,,y) < D.

yeX pooo
The following fundamental properties are well known.

Lemma 2.3 ([1, 8]). Let k € R, X an admissible CAT (k) space and {x,} a
D,./2-bounded sequence of X. Then A({z,}) consists of one point, and {x,}
has a A-convergent subsequence.

Lemma 2.4 ([6]). Let & € R, X an admissible CAT (k) space and {z,} a
D,./2-bounded sequence of X. If {d(xn,z)} is convergent for each A-limit z of
subsequences of {x}, then {x,} is A-convergent to an element of X.

3. A FUNCTION c,

In this section, we introduce a function ¢, which plays an important role in
this paper and we show fundamental properties of the function. For x € R, we
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define a function c, from [0, DH/Q:I into [0, co] by

2 ktt k24

() =5 =5 Ty T
S e
% (1 — cos (y/kt)) (k> 0);
_ %tz (k= 0);
—% (cosh (V=rt) —1) (5 <0),

for t € [0, D,/2[ and c,(Dy/2) = limyyp, 2 ¢ (t). Then it follows that

% sin (y/kt) (k> 0);
C;(t) —{qt (K‘ - 0)1
\/1_7 sinh (v=rt) (k <0),

and that

cos (v/kt) (k> 0);
=11 (1 = 0);
cosh (vV=rt) (k<0)
for all t € [0, D,;/2[. We know that

e ¢, is convex and increasing function with ¢, (0) = 0;
e ¢/ is an increasing function with ¢/ (0) = 0;
e /(0)=1.

We also know that
keg(t) +cl(t) =1
and

)+ kel (1) = 1.
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The sum theorems are formulated as:

(s +) = ()Lt + L5l (),
(s — ) = d()eL(t) — L5l (),
(s +) = dL(s)CL(t) — rel () (2),
(s — £) = dL()CL(t) + rel () (2).

In particular, we have

¢, (2t) = 26, (£)eL(D),

K

K1) = el (1)

K

=1—2rc, (1)
= 2kc!(1)* — 1.

From the formulas above, we obtain the following:
+b a—b
/ / b :2 / a 1
o =2 (50 e (257).
+b a—b
/ — (b)) = 2" a /
)~ =2 (5 ) (57)
l(a) + () = 2! (“ - b) (“ - b)

2
"(a) — c(b) = —2kC], ( —2|— >c; a;b>.

We also have

1 / /
= i(cn(s + t) + CK(S - t))’

AL(L0) = 3 (el +8) = chls — 1),

L)L) = 5 (ells + ) + il — 1),

—KC(8)c (t) = %(c;’,(s 1) — (s —1)).

By using the function ¢, and Corollary 2.2, we get the following lemma.
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Lemma 3.1. Let k € R, X a CAT(k) space, x,y,z € X satisfying d(x,y) +
d(y,z) +d(z,x) < D, and t € [0,1]. Then
Cﬁ(d(tw D (1 - t)y7 Z))C:i(d(x7 y))
= cn(d(z, 2))e, (td(z, ) + cx(d(y, 2))cl(d(z, y))
— e (d(z, y)/2)e, (td(z,y) /2)c (1 = t)d(z,y)/2).

4. VICINAL MAPPINGS WITH ¢ ON CAT(k) SPACES

Let X be an admissible CAT (k) spaces, T a mapping from X into itself and
¥ a function from [0, co[ into ]0, oo[, which is continuous at 0. T is said to be

e vicinal with v if

(Y(d(Tz, ) + (d(Ty, y))) cx(d(Tz, Ty))
< (d(Ty,y))en(d(Tx,y)) + Y(d(Te, x))cx(d(z, Ty))

for all z,y € X;
e firmly vicinal with v if
(W(d(Tr,x))en(d(Tx, x)) + b (d(Ty, y))ex(d(Ty, y)))ci(d(Tx, Ty))
+( (d(Tz,z)) +¢(d(Ty,y))) cx(d(Tz, Ty))
P(d(Ty, y))en(d(Tz,y)) + Y(d(Tx, x))cx(d(z, Ty))
for all z,y € X.

It is clear that every firmly vicinal mapping with 1 is vicinal with . We first
show the following important theorem. In what follows, we assume that ¢ is a
function from [0, oo[ into ]0, co[, which is continuous at 0.

Theorem 4.1. Let X be an admissible CAT(k) space, f a convexr function
from X into |—oo,00] and ¢ an increasing and differentiable function from
[0, ¢k (D, /2)[ into [0,00[, and suppose that ¢ is continuous. If

Ty = arferr;in{f(y) + @(ex(d(y, )}

s a single-valued mapping, then
(0" (Ka) Ky + ¢/ (Ky) Ky )i (d(Tz, Ty)) + (¢ (Ka) + ¢'(Ky)) ex(d(Tx, Ty))
= @’(Ky)cn(d(Tsc, y)) + ¢ (K )ex(d(z, Ty))

for all z,y € X, where K, = ¢, (d(Tz, z)) for all z € X.
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Proof. Let x,y € X satisfying Tz # Ty, and put z; = tTax & (1 — t)Ty for all
t €]0,1[. By the definition of T and convexity of f, we have

F(Ty) + o(Ky) = fze) + e(ex(d(z,y)))
Stf(Tx) + (1 =) f(Ty) + plex(d(z,9)))

and hence

t(f(Ty) — f(Tx)) = eleald(zt,y))) — o(Ky).
Dividing by ¢ and using the Lemma 3.1, we get

f(Ty) — f(Tx)
< 2 (plen(d(z0) — 0(K,))

o d(Ta,y))e (D) + Ky (1 = 0)D) — 4, (B) ¢ (12) ¢, (522)
(D)

A
~ | =

T ¥

- W(Ky)>7

where D = d(Tz,Ty). Taking the limit as ¢ tends to 0 and using 1'Hospital’s
rule, we have

D
F(Ty) = F(Ta) £ ¢ (K,) (ea(d(Tr.9)) = Kyel(D) = 26(D/2)) 5
D
= ¢'(Ky)(cxu(d(Tz,y)) — Kyc (D) — CH(D))C;(D)-
Since z and y are arbitrary, we also get
D
f(Tz) = f(Ty) = ¢'(Ky)(c(d(z, Ty)) — Kucil(D) — CH(D))W'
K
Adding each side of these inequalities, we get the conclusion. In the case that
Tx =Ty, we clearly obtain the conclusion. O

By Theorem 4.1, the resolvent Ry which was proposed by the authors [2] is
firmly vicinal mapping with . In fact, we define a function ¢: [0, c0[ — [0, 0]

1
pt)=t+1— —.

Since tanh asinha = cosha — 1/ cosha for all a € R, we can express

Ryx = argmin{ f(y) + ¢(coshd(y, x))}
yex
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for each x € X, and we know that Ry is a single-valued mapping. It is obvious
that the function ¢ is differentiable and

Ot)=1+ o >0
(t+1)2
for all ¢ € [0, 00[. Therefore, it follows from Theorem 4.1 that
(' (C2))Co + ¢'(Cy)Cy)ci(d(Ta, Ty)) + (¢'(Ca) + ¢'(Cy)) en(d(Tx, Ty))
= ¢'(Cy)ex(d(T, y)) + @' (Cr)ex(d(x, Ty))
for all z,y € X, where C, = coshd(Ryz, z) for all z € X. We also know that

Vls) =1+ (cosh s+ 1)2
is continuous at 0. Thus Ry is firmly vicinal with .

We remark that every firmly metrically nonspreading mapping on CAT(0)
spaces is firmly vicinal with a positive constant function. In fact, in the case
that k = 0 and ¥ (t) = K, the inequality of firm vicinality with ¢ becomes

Kd(Te,)? + Kd(Ty, y)? + 2Kd(Tz, Ty)? < Kd(Tz,y)? + Kd(z, Ty)?,

where K is a positive constant in R. Thus every firmly metrically nonspread-
ing mapping is vicinal with a positive constant function. Also, every metrically
nonspreading, spherically nonspreading mapping of sum-type, and hyperbol-
ically nonspreading mapping is vicinal with a positive constant function. In
fact, in the case that ¢ (t) = K, the inequality of vicinality with ¢ becomes

2K cosd(Tx,Ty) = K cosd(Tz,y) + K cosd(x, Ty) (k =1);

2Kd(T, Ty)? < Kd(Ta,y)? + Kd(z, Ty)* (k= 0);

2K coshd(Tz,Ty) £ K coshd(Tz,y) + K coshd(z,Ty) (k= —1),
where K is a positive constant in R. Thus every metrically nonspreading,
spherically nonspreading mapping of sum-type, and hyperbolically nonspread-

ing mapping is vicinal with a positive constant function. We next show funda-
mental properties of firmly vicinal mappings with .

Theorem 4.2. Let X be an admissible CAT (k) space and T a vicinal mapping
with @ from X into itself. If F(T') is nonempty, then T is quasi-nonexpansive.

Proof. Let x € X and p € F(T'). Then the vicinality with ¢ of T" implies that
(Y(d(Tz,x)) +¥(0))cx(d(Tz, p))
< Y(0)cx(d(Tz,p)) + (d(Tz, x))cw(d(z,p))
and hence
Y(d(Tz,x))ex(d(Tx, p)) < P(d(Tw,x))cx(d(z, p)).
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Since Y(d(Tz,x)) € 10, 00[, we have
cx(d(Tz,p)) < culd(z,p))

and hence
d(Tx,p) < d(z,p).

Therefore T is quasi-nonexpansive. O

Theorem 4.3. Let X be an admissible CAT (k) space, T' a vicinal mapping with
Y from X into itself and p € X. If a sequence {x,} of X satisfies A({zn}) =
{p} and lim, o d(Txp,x,) =0, then p is a fized point of T.

Proof. Let {xy} be asequence of X satistying A({z,}) = {p} and d(T'zp, x,) —
0 as n — oo. The vicinality with ¢ of T implies that

ce(d(Txp, Tp))

YTy, xy))
Y(d(Tp,p))

On the other hand, since A({z,}) = {p}, we know that {z,} is bounded.
Since d(Txn,z,) — 0, {Tz,} is also bounded, and it follows that
|d(Txyp, Tp) — d(xy,, Tp)] — 0. We also know that the function ¢, is uniformly
continuous on a bounded set. Therefore, using the boundedness of those se-
quences and continuity of ¢ at 0, we get

< cu(d(Tn, p)) + (ex(d(Tan, Tp)) = cu(d(zn, Tp)))-

lim sup ¢ (d(Tan, Tp)) < lim sup ¢, (d(T, p))

n—oo n—oo
and hence
limsup d(Tz,, Tp) < limsup d(Txy, p).
n—oo n—oo
Since A({zn}) = {p}, we get p € F(T). O

Corollary 4.4. Let X be an admissible CAT(k) space. Then, every vicinal
mapping with ¥ from X into itself is A-demiclosed.

Proof. Let {z,} be a sequence of X satisfying A p and d(Tz,,z,) — 0.
By the definition of A-convergence, we know that A({z,}) = {p}. Therefore,
by Theorem 4.3, p is a fixed point of 7. Thus we get the conclusion. O

Theorem 4.5. Let X be an admissible CAT(k) space and T a firmly vicinal
mapping with ¥ from X into itself. If F(T) is nonempty, then T is asymptot-
ically regular.
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Proof. Let x € X and p € F(T'). The firm vicinalty with ¢ of T implies that
(AT, T ) e (AT a, T ) + 9 (0)cx (0) (AT a, p))
+ (AT 2, T ) +(0)en (AT, p)
S Y(0)cn (AT, p) + (T e, Tx)) e (d(T"x, p))
and hence
(AT 2, T ) e (d(T" a, T )i (d(T" 2, p))
< YT, T"2))en (AT, p)) — BT 2, T0)yen(d(T™ 2, ).
Since (d(T" 2, T"z)) €10, 00 and ¢’ (d(T" 2, p)) € ]0, 00|, we get
e (d(T"2,p)) — co(d(T™ 2, p)
ci(d(Tr+ 1z, p)) '
On the other hand, it follows from Theorem 4.2 that

Cu(d(T" e, Tr2)) <

D,

Thus there exists a € [0, D /2[ such that d(T"z,p) — a. Therefore, it follows
that

ce(d(T",p)) = cn(d(T™H2,p))
i (d(T* 1z, p))
and hence d(T" "z, T"z) — 0. Thus T is asymptotically regular. O

0 < cp(d(T™ 2, T"x)) <

Using Theorems 4.2, 4.4, and 4.5, we next show the following convergence
theorem.

Theorem 4.6. Let X be an admissible complete CAT (k) space and T a firmly
vicinal mapping with ¥ from X into itself. If F(T) is nonempty, then {T™x}
is A-convergent to an element of F(T).

Proof. Let x € X. It follows from Theorem 4.2 that

T
£ 1i AT z,y) < inf i a(T" inf  d(z,y) < ~.
yng 1”m_>solip (Trax,y) < yel;_l » 1msup (Trz,y) < 1£(T) (z,9) 5

Therefore, by using Lemma 2.3, {T™z} has a A-convergent subsequence. Let

{T™x} be a subsequence of {T"x} satisfying T™x Az Using Theorem 4.5,
we get

lim d(T(T"x),T"z) = lim d(T"" 'z, T"z) = 0.

n—oQ n—oo

Thus Corollary 4.4 implies that z € F(T). It follows from Theorem 4.2 that

0<d(Tz,2) < d(T" 'z,2) < - S d(z,y) < g
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Therefore {d(T"x,z)} is convergent. Hence, by Lemma 2.4, {T"z} is A-
convergent to an element of X. From Corollary 4.4 and Theorem 4.5, the
A-limit of {T™z} belongs to F(T'). O
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