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weak, strong, and converse-like duality relations under assumptions of (strictly)
generalized convex-concavity.

In what follows, we recall some symbols and the problem model from [13].
Let K = {1, . . . , l}, J = {1, . . . ,m} be index sets, and the real-valued functions
pk, qk, k ∈ K, be locally Lipschitz on Rn, and gj , j ∈ J be given real-valued

functions. Furthermore, denote f(x) :=
(p1(x)
q1(x)

, . . . , pl(x)
ql(x)

)
for simplicity. For the

sake of convenience, we further assume that pk(x) ≥ 0, qk(x) > 0, k ∈ K for
all x ∈ Rn. Here after, we use the notation f := (f1, . . . , fl), where fk := pk

qk
,

k ∈ K, and g := (g1, . . . , gm).
We consider the fractional multi-objective optimization problem in the face

of data uncertainty in the constraints of the form:

MinRl
+

{f(x) | gj(x, vj) ≤ 0, j ∈ J} ,(UP)

where MinRl
+

in the above problem will be understood with respect to the

ordering cone Rl
+ := {(y1, . . . , yl) | yi ≥ 0, i = 1, . . . , l}; x ∈ Rn is the vector of

decision variables, vj ∈ Vj , j ∈ J are uncertain parameters, gj : Rn × Vj → R,
j ∈ J are continuous real-valued functions.

Following the robust approach, we associate with (UP) its robust counterpart:

MinRl
+

{f(x) | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j ∈ J} .(RP)

In addition, let F be the feasible set of problem (RP), which is given by

F := {x ∈ Rn | gj(x, vj) ≤ 0, ∀vj ∈ Vj , j ∈ J}.(1.1)

Definition 1.1. We say that x̄ ∈ F is a local Pareto solution to problem (RP)
if and only if there is no x ∈ F and there is neighborhood U of x̄ such that

fk(x) ≤ fk(x̄), ∀x ∈ F ∩ U, k ∈ K,(1.2)

with at least one strict inequality. If in addition all the inequalities in (1.2) are
strict, then one has the definition for local weakly Pareto solution to problem
(RP).

Now, we assume the following two assumptions for the functions gj , j ∈ J,
given in (1.1); see [6, 13] for more detail. The definitions of B(·, ·) and closedness
for multifunction are given in the beginning of Section 2.

(A1) For a fixed x̄ ∈ Rn, there exists δx̄j > 0 such that the function vj ∈
Vj 7→ gj(x, vj) ∈ R is upper semicontinuous for each x ∈ B(x̄, δx̄j ), and
the functions gj(·, vj), vj ∈ Vj , are Lipschitz of given rank Lj > 0 on
B(x̄, δx̄j ), i.e.,∣∣gj(x1, vj)− gj(x2, vj)

∣∣ ≤ Lj‖x1 − x2‖, ∀x1, x2 ∈ B(x̄, δx̄j ), ∀vj ∈ Vj .
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(A2) The multifunction (x, vj) ∈ B(x̄, δx̄j )× Vj ⇒ ∂xgj(x, vj) ⊂ Rn is closed
at (x̄, v̄j) for each v̄j ∈ Vj(x̄), where the symbol ∂x stands for the
limiting subdifferential operation with respect to x, and the notation
Vj(x̄) signifies active indices in Vj at x̄, i.e.,

Vj(x̄) :=
{
vj ∈ Vj | gj(x̄, vj) = Gj(x̄)

}
(1.3)

with Gj(x̄) := supvj∈Vj
gj(x̄, vj).

Definition 1.2. Let x̄ ∈ F. We say that the constraint qualification (CQ) is
satisfied at x̄ if

0 /∈ co
{
∪ ∂xgj(x̄, vj) | vj ∈ Vj(x̄), j ∈ J

}
.

Next, by using the parametric approach, we transform the problem (RP)
into the nonsmooth non-fractional robust multi-objective optimization problem
(RP)γ with a parameter γ = (γ1, . . . , γl) ∈ Rl

+.

MinRl
+

{
f̂(x) :=

(
p1(x)− γ1q1(x), . . . , pl(x)− γlql(x)

)
|x ∈ F

}
,(RP)γ

where the feasible set F is same as (1.1).
We organize the rest of the paper as follows. Section 2 provides some pre-

liminaries and notations. In Section 3, we recall the results on optimality
conditions for problem (RP) studied by Hong et al. [13]. Our main findings on
duality are proposed in Section 4. Finally, conclusions are given in Section 5.

2. Preliminaries

Throughout this paper, we will use some notations and preliminary results;
see, e.g., [20, 21]. Let Rn denote the Euclidean space equipped with the usual
Euclidean norm ‖ · ‖. The nonnegative orthant of Rn is denoted by Rn

+ :=
{(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n}. The inner product in Rn is defined by
〈x, y〉 := xT y for all x, y ∈ Rn. The symbol B(x, ρ) stands for the open ball
centered at x ∈ Rn with the radius ρ > 0. For a given set Ω ⊂ Rn, we use coΩ

to indicate the convex hull of Ω, and the notation x
Ω−→ x̄ means that x → x̄

with x ∈ Ω.
A given set-valued mapping F : Ω ⊂ Rn ⇒ Rm is said to be closed at x̄ ∈ Ω

if for any sequence {xk} ⊂ Ω, xk → x̄, and any sequence {yk} ⊂ Rm, yk → ȳ,
one has ȳ ∈ F (x̄).

Given a multifunction F : Rn ⇒ Rm with values F (x) ⊂ Rm in the collection
of all the subsets of Rm. The limiting construction

Limsup
x→x̄

F (x) :=
{
y ∈ Rm | ∃ xk → x̄, yk → y with yk ∈ F (xk) for all k ∈ N

}
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is known as the Painlevé–Kuratowski upper/outer limit of the multifunction F
at x̄, in which N := {1, 2, . . .}.

Given Ω ⊂ Rn, and x̄ ∈ Ω, define the collection of Fréchet/regular normal
cone to Ω at x̄ by

N̂(x̄; Ω) = N̂Ω(x̄) :=

{
v ∈ Rn

∣∣∣∣ lim sup

x
Ω−→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0

}
.

If x̄ /∈ Ω, we put N̂(x̄; Ω) := ∅.
The Mordukhovich/limiting normal cone N(x̄; Ω) to Ω at x̄ ∈ Ω ⊂ Rn is ob-

tained from regular normal cones by taking the sequential Painlevé-Kuratowski
upper limits as

N(x̄; Ω) := Limsup

x
Ω−→x̄

N̂(x; Ω).

If x̄ /∈ Ω, we put N(x̄; Ω) := ∅.
For an extended real-valued function ϕ : Rn → R := [−∞,+∞] its domain

and epigraph are defined by

domϕ :=
{
x ∈ Rn | ϕ(x) < ∞

}
and epiϕ :=

{
(x, µ) ∈ Rn × R | ϕ(x) ≤ µ

}
,

respectively.
Let ϕ : Rn → R̄ be finite at x̄ ∈ domϕ, then the collection of basic subgradients,

or the (basic/Mordukhovich/limiting) subdifferential, of ϕ at x̄ is defined by

∂ϕ(x̄) :=
{
v ∈ Rn | (v,−1) ∈ N

(
(x̄, ϕ(x̄)); epiϕ

)}
.

Recall that a function ϕ : Rn → R̄ is known as locally Lipschitz at x̄ ∈ Rn

with rank L > 0, i.e., there exists ρ > 0 such that

‖ϕ(x1)− ϕ(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ B(x̄, ρ).

The following concepts of (strictly) generalized convex-concavity at a given
point for locally Lipschitz functions is inspired by [6, Definition 3.9], [12, Defi-
nition 3.7] and [11, Definition 3.11]; see also [13, Definition 3.2].

Definition 2.1. (i) We say that (p, g; q) is generalized convex-concave on
Rn at x̄ ∈ Rn if for any x ∈ Rn, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K, and
ηv ∈ ∂xgj(x̄, v), v ∈ Vj(x̄), j ∈ J, there exists h ∈ Rn such that

pk(x)− pk(x̄) ≥ 〈ξk, h〉, k ∈ K,

qk(x)− qk(x̄) ≤ 〈ζk, h〉, k ∈ K,

gj(x, v)− gj(x̄, v) ≥ 〈ηv, h〉, v ∈ Vj(x̄), j ∈ J,

where Vj(x̄), j ∈ J, are defined as in (1.3).
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(ii) We say that (p, g; q) is strictly generalized convex-concave on Rn at
x̄ ∈ Rn if for any x ∈ Rn\{x̄}, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K, and
ηv ∈ ∂xgj(x̄, v), v ∈ Vj(x̄), j ∈ J, there exists h ∈ Rn such that

pk(x)− pk(x̄) > 〈ξk, h〉, k ∈ K,

qk(x)− qk(x̄) ≤ 〈ζk, h〉, k ∈ K,

gj(x, v)− gj(x̄, v) ≥ 〈ηv, h〉, v ∈ Vj(x̄), j ∈ J,

where Vj(x̄), j ∈ J, are defined as in (1.3).

Remark 2.1. (c.f. [13, Remark 3.2]) We see that if pk, k ∈ K, and gj , j ∈ J
are convex (resp., strictly convex), and qk, k ∈ K are concave (strictly concave),
then (p, g; q) is generalized convex-concave (resp., strictly generalized convex-
concave) on Rn at any x̄ ∈ Rn with h := x− x̄ for each x ∈ Rn.

3. Previous results on optimality conditions

In this section, we recall some results on optimality conditions for problem
(RP); see [13] for the proof in detail.

First, we recall the Fritz-John type necessary optimality condition for a local
weakly Pareto solution to problem (RP)γ .

Theorem 3.1 (c.f. [13, Theorem 3.1]). Let γk = pk(x̄)
qk(x̄)

, k ∈ K. If x̄ is a local

weakly Pareto solution to problem (RP), then there exist βk ≥ 0, k ∈ K and
µj ≥ 0, j ∈ J with

∑
k∈Kβk +

∑
j∈Jµj = 1, such that

0 ∈
∑
k∈K

βk∂pk(x̄)−
∑
k∈K

βkγk∂qk(x̄) +
∑
j∈J

µjco {∪∂xgj(x̄, vj) | vj ∈ Vj(x̄)},
(3.1)

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

Remark 3.1. If the (CQ) given in Definition 1.2 holds, then βk in (3.1) can be
chosen not all zero, and hence, a point x̄ ∈ F is satisfy (KKT) condition (3.1).
Indeed, if βk = 0, for all k ∈ K, then 0 ∈ co

{
∪∂xgj(x̄, vj) | vj ∈ Vj(x̄), j ∈ J

}
,

which reaches to a contradiction to our assumption that the (CQ) holds; see
the next theorem, which is the Karash–Kuhn–Tucker type necessary optimality
condition for a local weakly Pareto solution to the nonsmooth fractional robust
multi-objective optimization problem (RP).

Theorem 3.2 (c.f. [13, Theorem 3.2]). Let x̄ be a local weakly Pareto solution
to problem (RP), then there exist βk ≥ 0, k ∈ K and µj ≥ 0, j ∈ J with
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k∈Kβk +

∑
j∈Jµj = 1, such that

0 ∈
∑
k∈K

αk

(
∂pk(x̄)−

pk(x̄)

qk(x̄)
∂qk(x̄)

)
+
∑
j∈J

µjco {∪∂xgj(x̄, vj) | vj ∈ Vj(x̄)},

(3.2)

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J,

where αk = βk

qk(x̄)
. If we further assume that the (CQ) holds at x̄, then∑

k∈Kαk 6= 0.

Theorem 3.3 (c.f. [13, Theorem 3.3]). Assume that x̄ ∈ F satisfies the con-
dition (3.1) with

∑
k∈Kβk 6= 0.

(i) If (p, g; q) is generalized convex-concave at x̄, then x̄ is a weakly Pareto
solution to problem (RP).

(ii) If (p, g; q) is strictly generalized convex-concave at x̄, then x̄ is a Pareto
solution to problem (RP).

Theorem 3.4. (c.f. [13, Theorem 3.4]) Assume that x̄ ∈ F satisfies the con-
dition (3.2) with

∑
k∈Kαk 6= 0.

(i) If (p, g; q) is generalized convex-concave at x̄, then x̄ is a weakly Pareto
solution to problem (RP).

(ii) If (p, g; q) is strictly generalized convex-concave at x̄, then x̄ is a Pareto
solution to problem (RP).

4. Main results: duality relations

In this section, we propose model-types of both non-fractional and fractional
problems for problem (RP). Then weak, strong, and converse robust duality
relations between them are examined, respectively. In what follows, we use the
following notation for convenience.

u ≺ v ⇔ u− v ∈ −intRl
+, u ⊀ v is the negation of u ≺ v,

u � v ⇔ u− v ∈ −Rl
+\{0}, u ⪯̸ v is the negation of u � v.

Moreover, we also define RN
+ :=

{
µ := (µj , µji), j ∈ J = {1, . . . ,m}, i ∈ Ij =

{1, . . . , ij} | ij ∈ N, µj ≥ 0, µji ≥ 0,
∑

i∈Ij
µji = 1

}
for simplicity.
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4.1. Non-fractional dual model. For z ∈ Rn, β := (β1, . . . , βl) ∈ Rl
+\{0},

γ := (γ1, . . . , γl) ∈ Rl
+, and µ ∈ RN

+, in connection with the fractional multio-
bjective optimization problem (RP), we consider its non-fractional robust multi-
objective dual problem of the form:

MaxRl
+

{
f̆(z, β, µ) := (γ1, . . . , γl)

∣∣ (z, β, µ) ∈ FD1

}
,(RD)γ

where the feasible set FD1 is defined by

FD1
:=

{
(z, β, µ) ∈ Rn ×

(
Rl

+\{0}
)
× RN

+

∣∣∣∣ 0 ∈
∑
k∈K

βk∂pk(z)−
∑
k∈K

βkγk∂qk(z)

+
∑
j∈J

µj

(∑
i∈Ij

µjiηji
)
,
∑
j∈J

µjgj(z, vj) ≥ 0, ηji ∈ {∪∂xgj(z, vji) | vji ∈ Vj(z)}
}
,

where vj ∈ Vj(z), Vj(z) is defined as in (1.3) by replacing x̄ with z, and j ∈ J,
i ∈ Ij = {1, . . . , ij}.

Definition 4.1. A feasible point (z̄, β̄, µ̄) ∈ FD1
is said to be

(i) a local Pareto solution to problem (RD)γ , if and only if there is neigh-
borhood U of (z̄, β̄, µ̄) such that

f̆(z, β, µ)− f̆(z̄, β̄, µ̄) /∈ Rl
+\{0}, ∀(z, β, µ) ∈ FD1

∩ U.

(ii) a local weakly Pareto solution to problem (RD)γ , if and only if there is
neighborhood U of (z̄, β̄, µ̄) such that

f̆(z, β, µ)− f̆(z̄, β̄, µ̄) /∈ intRl
+, ∀(z, β, µ) ∈ FD1

∩ U.

The following theorem describes weak duality relations between the primal
problem (RP) and the dual problem (RD)γ .

Theorem 4.1 (Weak duality). Let x ∈ F and (z, β, µ) ∈ FD1 be given.

(i) If (p, g; q) is generalized convex-concave on Rn at z, then

f(x) ⊀ f̆(z, β, µ).

(ii) If (p, g; q) is strictly generalized convex-concave on Rn at z, then

f(x) ⪯̸ f̆(z, β, µ).

Proof. Since (z, β, µ) ∈ FD1 , there exist βk ≥ 0, ξk ∈ ∂pk(z), ζk ∈ ∂qk(z), γk =
pk(z)
qk(z)

, k ∈ K with
∑

k∈K βk 6= 0, and µj ≥ 0, j ∈ J, µji ≥ 0, ηji ∈ ∂xgj(z, vji),
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vji ∈ Vj(z), i ∈ Ij = {1, . . . , ij}, ij ∈ N,
∑

i∈Ij
µji = 1, such that

0 =
∑
k∈K

βkξk −
∑
k∈K

βkγkζk +
∑
j∈J

µj

(∑
i∈Ij

µjiηji
)
,

∑
j∈J

µjgj(z, vj) ≥ 0.(4.1)

We first justify (i). Assume to the contrary that

f(x) ≺ f̆(z, β, µ).

In other words,

f(x)− f̆(z, β, µ) ∈ −intRl
+.(4.2)

Along with the generalized convex-concavity of (p, g; q) on Rn at z, for such x,
there exists h ∈ Rn such that

0 =
∑
k∈K

βk〈ξk, h〉 −
∑
k∈K

βkγk〈ζk, h〉+
∑
j∈J

µj

(∑
i∈Ij

µji〈ηji, h〉
)

≤
∑
k∈K

βk

(
pk(x)− pk(z)

)
−

∑
k∈K

βkγk
(
qk(x)− qk(z)

)
+
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])

=
∑
k∈K

βkpk(x)−
∑
k∈K

βkγkqk(x) +
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])
.

(4.3)

Due to the fact that x ∈ F, one has∑
j∈J

µj

(∑
i∈Ij

µjigj(x, vji)
)
≤ 0.

Thus, it follows from (4.3) that

0 ≤
∑
k∈K

βkpk(x)−
∑
k∈K

βkγkqk(x)−
∑
j∈J

µj

(∑
i∈Ij

µjigj(z, vji)
)

≤
∑
k∈K

βkpk(x)−
∑
k∈K

βkγkqk(x),

where the last inequality holds true due to (4.1). Since β ∈ Rl
+\{0}, we have

there is k0 ∈ K such that

0 ≤ pk0
(x)− γk0

qk0
(x).(4.4)
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Observe that the inequality (4.4) is lead to the k0-th component of f̆(z, β, µ) =

γk0
≤ pk0

(x)

qk0
(x) = the k0-th component of f(x), which contradicts (4.2).

Now, let us prove (ii). Assume to the contrary that

f(x) � f̆(z, β, µ),

which means

f(x)− f̆(z, β, µ) ∈ −Rl
+\{0}.(4.5)

By the strictly generalized convex-concavity of (p, g; q) on Rn at z, for such
x, there exists h ∈ Rn such that

0 =
∑
k∈K

βk〈ξk, h〉 −
∑
k∈K

βkγk〈ζk, h〉+
∑
j∈J

µj

(∑
i∈Ij

µji〈ηji, h〉
)

<
∑
k∈K

βk

(
pk(x)− pk(z)

)
−

∑
k∈K

βkγk
(
qk(x)− qk(z)

)
+
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])
=

∑
k∈K

βkpk(x)−
∑
k∈K

βkγkqk(x) +
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])
.

Similarly as in the proof of (i), we arrive at

0 <
∑
k∈K

βkpk(x)−
∑
k∈K

βkγkqk(x).

This entails that there is k0 ∈ K such that

0 < pk0
(x)− γk0

qk0
(x).

Equivalently, the k0-th component of f̆(z, β, µ) = γk0
<

pk0
(x)

qk0
(x) = the k0-th

component of f(x), which contradicts (4.5). Thus, the proof is complete. □

The next theorem provides strong duality relations between the primal prob-
lem (RP) and the dual problem (RD)γ .

Theorem 4.2 (Strong duality). Let x̄ be a local weakly Pareto solution to
problem (RP) such that the (CQ) is satisfied at this point. Then there exists

(β̄, µ̄) ∈
(
Rl

+\{0}
)
× RN

+ such that (x̄, β̄, µ̄) ∈ FD1
and f(x̄) = f̆(x̄, β̄, µ̄).

Furthermore,

(i) If (p, g; q) is generalized convex-concave on Rn at any z ∈ Rn, then
(x̄, β̄, µ̄) is a weakly Pareto solution to problem (RD)γ .
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(ii) If (p, g; q) is strictly generalized convex-concave on Rn at any z ∈ Rn,
then (x̄, β̄, µ̄) is a Pareto solution to problem (RD)γ .

Proof. By Theorem 3.1, we find βk ≥ 0, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄), γk = pk(x̄)
qk(x̄)

,

k ∈ K with
∑

k∈K βk 6= 0, and µj ≥ 0, j ∈ J, µji ≥ 0, ηji ∈ ∂xgj(x̄, vji),
vji ∈ Vj(x̄), i ∈ Ij = {1, . . . , ij}, ij ∈ N,

∑
i∈Ij

µji = 1 such that

0 =

l∑
k=1

βkξk −
l∑

k=1

βkγkζk +
∑
j∈J

µj

(∑
i∈Ij

µjiηji
)
,(4.6)

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.(4.7)

Since vji ∈ Vj(x̄), we have gj(x̄, vji) = supvj∈Vj
gj(x̄, vj) for j ∈ J, and

i ∈ Ij = {1, . . . , ij}. Thus, it follows from (4.7) that µjgj(x̄, vji) = 0 for j ∈ J
and i ∈ Ij . This entails that∑

j∈J

µj

(∑
i∈Ij

µjigj(x̄, vji)
)
=

∑
j∈J

(∑
i∈Ij

µjiµjgj(x̄, vji)
)
= 0.(4.8)

Letting β̄ := (β1, . . . , βl) ∈ Rl
+\{0} and µ̄ := (µj , µji). Along with (4.6) and

(4.8), we conclude that (x̄, β̄, µ̄) ∈ FD1
. Thus, f(x̄) = f̆(x̄, β̄, µ̄).

(i) As (p, g; q) is generalized convex-concave at any z ∈ Rn, by invoking
Theorem 4.1 (i), we obtain

f̆(x̄, β̄, µ̄) = f(x̄) ⊀ f̆(z, β, µ)

for any (z, β, µ) ∈ FD1 . This means that (x̄, β̄, µ̄) is a weakly Pareto solution
to problem (RD)γ .

(ii) Since (p, g; q) is strictly generalized convex-concave at any z ∈ Rn, by
invoking Theorem 4.1 (ii), we assert that

f̆(x̄, β̄, µ̄) ⪯̸ f̆(z, β, µ)

for any (z, β, µ) ∈ FD1 . This means that (x̄, β̄, µ̄) is a Pareto solution to prob-
lem (RD)γ . □

Now, we present converse-like duality relations between the primal prob-
lem (RP) and the dual problem (RD)γ .

Theorem 4.3 (Converse-like duality). Let (x̄, β̄, µ̄) ∈ FD1
.

(i) If x̄ ∈ F and (p, g; q) is generalized convex-concave on Rn at x̄, then x̄
is a weakly Pareto solution to problem (RP).

(ii) If x̄ ∈ F and (p, g; q) is strictly generalized convex-concave on Rn at x̄,
then x̄ is a Pareto solution to problem (RP).
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Proof. Since (x̄, β̄, µ̄) ∈ FD1 , there exist β̄ := (β1, . . . , βl) ∈ Rl
+\{0}, ξk ∈

∂pk(x̄), ζk ∈ ∂qk(x̄), γk = pk(x̄)
qk(x̄)

, k ∈ K, and µ̄ := (µj , µji), µj ≥ 0, j ∈ J, µji ≥
0, ηji ∈ ∂xgj(x̄, vji), vji ∈ Vj(x̄), i ∈ Ij = {1, . . . , ij}, ij ∈ N,

∑
i∈Ij

µji = 1,

such that

0 =

l∑
k=1

βkξk −
l∑

k=1

βkγkζk +
∑
j∈J

µj

(∑
i∈Ij

µjiηji

)
,(4.9)

∑
j∈J

µjgj(x̄, vj) ≥ 0.(4.10)

Let x̄ ∈ F. Then gj(x̄, vj) ≤ 0, for all vj ∈ Vj , j ∈ J, and thus, µjgj(x̄, vj) ≤ 0.
This, together with (4.10), yields

µjgj(x̄, vj) = 0, j ∈ J,

i.e.,

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

So, we assert by virtue of (4.9) that x̄ satisfies condition (3.1). To finish the
proof, it remains to apply Theorem 3.3. □

4.2. Fractional dual model. For z ∈ Rn, α := (α1, . . . , αl) ∈ Rl
+\{0}, and

µ ∈ RN
+, in connection with the fractional multiobjective optimization prob-

lem (RP), we consider its fractional robust multiobjective dual problem of the
form:

MaxRl
+

{
f̃(z, α, µ) :=

(
p1(z)

q1(z)
, . . . ,

pl(z)

ql(z)

) ∣∣∣∣ (z, α, µ) ∈ FD2

}
,(RD)

where the feasible set FD2 is defined by

FD2
:=

{
(z, α, µ) ∈ Rn ×

(
Rl

+\{0}
)
× RN

+

∣∣∣∣ 0 ∈
∑
k∈K

αk

(
∂pk(z)−

pk(z)

qk(z)
∂qk(z)

)
+
∑
j∈J

µj

(∑
i∈Ij

µjiηji
)
,
∑
j∈J

µjgj(z, vj) ≥ 0, ηji ∈ {∪∂xgj(z, vji) | vji ∈ Vj(z)}
}
,

where vj ∈ Vj(z), Vj(z) is defined as in (1.3) by replacing x̄ with z, and j ∈ J,
i ∈ Ij = {1, . . . , ij}.

Definition 4.2. A feasible point (z̄, ᾱ, µ̄) ∈ FD2 is said to be

(i) a local Pareto solution to problem (RD), if and only if there is neigh-
borhood U of (z̄, ᾱ, µ̄) such that

f̃(z, α, µ)− f̃(z̄, ᾱ, µ̄) /∈ Rl
+\{0}, ∀x ∈ FD2

∩ U.
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(ii) a local weakly Pareto solution to problem (RD), if and only if there is
neighborhood U of (z̄, ᾱ, µ̄) such that

f̃(z, α, µ)− f̃(z̄, ᾱ, µ̄) /∈ intRl
+, ∀x ∈ FD2

∩ U.

We first show the weak duality relations between the primal problem (RP)
and the dual problem (RD).

Theorem 4.4 (Weak duality). Let x ∈ F and (z, α, µ) ∈ FD2 .

(i) If (p, g; q) is generalized convex-concave on Rn at z, then

f(x) ⊀ f̃(z, α, µ).

(ii) If (p, g; q) is strictly generalized convex-concave on Rn at z, then

f(x) ⪯̸ f̃(z, α, µ).

Proof. Since (z, α, µ) ∈ FD2 , there exist αk ≥ 0, ξk ∈ ∂pk(z), ζk ∈ ∂qk(z),
k ∈ K with

∑
k∈K αk 6= 0, and µj ≥ 0, j ∈ J, µji ≥ 0, ηji ∈ ∂xgj(z, vji),

vji ∈ Vj(z), i ∈ Ij = {1, . . . , ij}, ij ∈ N,
∑

i∈Ij
µji = 1, such that

0 =
∑
k∈K

αk

(
ξk − pk(z)

qk(z)
ζk

)
+

∑
j∈J

µj

(∑
i∈Ij

µjiηji

)
,

∑
j∈J

µjgj(z, vj) ≥ 0.(4.11)

We first justify the item (i). Assume to the contrary that

f(x) ≺ f̃(z, α, µ).

This means that

f(x)− f̃(z, α, µ) ∈ −intRl
+.(4.12)
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By the generalized convex-concavity of (p, g; q) on Rn at z, for such x, there
exists h ∈ Rn such that

0 =
∑
k∈K

αk

(
〈ξk, h〉 −

pk(z)

qk(z)
〈ζk, h〉

)
+
∑
j∈J

µj

(∑
i∈Ij

µji〈ηji, h〉
)

≤
∑
k∈K

αk

[
pk(x)− pk(z)−

pk(z)

qk(z)

(
qk(x)− qk(z)

)]
+
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])

=
∑
k∈K

αk

[
pk(x)−

pk(z)

qk(z)
qk(x)

]
+

∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])
.

(4.13)

Since x ∈ F, then
∑

j∈Jµj

(∑
i∈Ij

µjigj(x, vji)
)
≤ 0. Thus, it yields form (4.13)

that

0 ≤
∑
k∈K

αk

[
pk(x)−

pk(z)

qk(z)
qk(x)

]
−
∑
j∈J

µj

(∑
i∈Ij

µjigj(z, vji)
)
.

Moreover, since (4.11) is valid, thus
∑

j∈Jµj

(∑
i∈Ij

µjigj(z, vji)
)
≥ 0, and so

0 ≤
∑
k∈K

αk

[
pk(x)−

pk(z)

qk(z)
qk(x)

]
.

This entails that there is k0 ∈ K such that

0 ≤ pk0(x)−
pk0

(z)

qk0(z)
qk0(x),(4.14)

due to α ∈ Rl
+\{0}. The inequality (4.14) is lead to the k0-th component of

f̃(z, α, µ) =
pk0

(z)

qk0
(z) ≤ pk0

(x)

qk0
(x) = the k0-th component of f(x), which contra-

dicts (4.12). Thus, the item (i) is proved.
Now, we show the item (ii). Assume to the contrary that

f(x) � f̃(z, α, µ),

i.e.,

f(x)− f̃(z, α, µ) ∈ −Rl
+\{0}.(4.15)
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By the strictly generalized convex-concavity of (p, g; q) on Rn at z, for such x,
there exists h ∈ Rn such that

0 =
∑
k∈K

αk

(
〈ξk, h〉 −

pk(z)

qk(z)
〈ζk, h〉

)
+
∑
j∈J

µj

(∑
i∈Ij

µji〈ηji, h〉
)

<
∑
k∈K

αk

[
pk(x)− pk(z)−

pk(z)

qk(z)

(
qk(x)− qk(z)

)]
+
∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])

=
∑
k∈K

αk

[
pk(x)−

pk(z)

qk(z)
qk(x)

]
+

∑
j∈J

µj

(∑
i∈Ij

µji

[
gj(x, vji)− gj(z, vji)

])
.

A similar argument as in the proof of item (i), we arrive at

0 <
∑
k∈K

αk

[
pk(x)−

pk(z)

qk(z)
qk(x)

]
.

This entails that there is k0 ∈ K such that

0 < pk0(x)−
pk0(z)

qk0
(z)

qk0
(x).

Equivalently, the k0-th component of f̃(z, α, µ) =
pk0

(z)

qk0
(z) <

pk0
(x)

qk0
(x) = the k0-

th component of f(x). which contradicts (4.15). Thereby, the desired result
follows. □

Next, we proposes strong duality relations between the primal problem (RP)
and the dual problem (RD).

Theorem 4.5 (Strong duality). Let x̄ be a local weakly Pareto solution to
problem (RP) such that the (CQ) holds at this point. Then there exists (ᾱ, µ̄) ∈(
Rl

+\{0}
)
× RN

+ such that (x̄, ᾱ, µ̄) ∈ FD2
and f(x̄) = f̃(x̄, ᾱ, µ̄). Furthermore,

(i) If (p, g; q) is generalized convex-concave on Rn at any z ∈ Rn, then
(x̄, ᾱ, µ̄) is weakly Pareto solution to problem (RD).

(ii) If (p, g; q) is strictly generalized convex-concave on Rn at any z ∈ Rn,
then (x̄, ᾱ, µ̄) is Pareto solution to problem (RD).

Proof. Along with Theorem 3.2, we find αk ≥ 0, ξk ∈ ∂pk(x̄), ζk ∈ ∂qk(x̄),
k ∈ K with

∑
k∈K αk 6= 0, and µj ≥ 0, j ∈ J, µji ≥ 0, ηji ∈ ∂xgj(x̄, vji),
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vji ∈ Vj(x̄), i ∈ Ij = {1, . . . , ij}, ij ∈ N,
∑

i∈Ij
µji = 1, such that

0 =
∑
k∈K

αk

(
ξk − pk(x̄)

qk(x̄)
ζk

)
+
∑
j∈J

µj

(∑
i∈Ij

µjiηji

)
,(4.16)

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.(4.17)

Since vji ∈ Vj(x̄), then gj(x̄, vji) = supvj∈Vj
gj(x̄, vj) for j ∈ J and i ∈ Ij =

{1, . . . , ij}. Thus, it stems from (4.17) that µjgj(x̄, vji) = 0 for j ∈ J and i ∈ Ij .
This entails that∑

j∈J

µj

(∑
i∈Ij

µjigj(x̄, vji)
)
=

∑
j∈J

(∑
i∈Ij

µjiµjgj(x̄, vji)
)
= 0.(4.18)

Letting ᾱ := (α1, . . . , αl) ∈ Rl
+\{0}, and µ̄ := (µj , µji). It follows from (4.16)

and (4.18) that (x̄, ᾱ, µ̄) ∈ FD2
. Observe that f(x̄) = f̃(x̄, ᾱ, µ̄).

(i) As (p, g; q) is generalized convex-concave at any z ∈ Rn, by invoking
Theorem 4.4 (i), we obtain

f̃(x̄, ᾱ, µ̄) = f(x̄) ⊀ f̃(z, α, µ)

for any (z, α, µ) ∈ FD, i.e., (x̄, ᾱ, µ̄) is a weakly Pareto solution to problem
(RD).

(ii) Since (p, g; q) is strictly generalized convex-concave at any z ∈ Rn, by
invoking Theorem 4.4 (ii), we assert that

f̃(x̄, ᾱ, µ̄) ⪯̸ f̃(z, α, µ)

for any (z, α, µ) ∈ FD2
, that is, (x̄, ᾱ, µ̄) is a Pareto solution to problem (RD).

□

Finally, we present converse-like duality relations between the primal prob-
lem (RP) and the dual problem (RD).

Theorem 4.6 (Converse-like duality). Let (x̄, ᾱ, λ̄) ∈ FD2 .

(i) If x̄ ∈ F and (p, g; q) is generalized convex-concave on Rn at x̄, then x̄
is a weakly Pareto solution of problem (RP).

(ii) If x̄ ∈ F and (p, g; q) is strictly generalized convex-concave on Rn at x̄,
then x̄ is a Pareto solution of problem (RP).

Proof. Since (x̄, ᾱ, µ̄) ∈ FD2 , there exist ᾱ := (α1, . . . , αl) ∈ Rl
+\{0}, ξk ∈

∂pk(x̄), ζk ∈ ∂qk(x̄), k ∈ K, and µ̄ := (µj , µji), µj ≥ 0, j ∈ J, µji ≥ 0,
ηji ∈ ∂xgj(x̄, vji), vji ∈ Vj(x̄), i ∈ Ij = {1, . . . , ij}, ij ∈ N,

∑
i∈Ij

µji = 1, such
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that

0 =
∑
k∈K

αk

(
ξk − pk(x̄)

qk(x̄)
ζk

)
+
∑
j∈J

µj

(∑
i∈Ij

µjiηji

)
,(4.19)

∑
j∈J

µjgj(x̄, vj) ≥ 0.(4.20)

Let x̄ ∈ F. Then gj(x̄, vj) ≤ 0, for all vj ∈ Vj , j ∈ J, and thus, µjgj(x̄, vj) ≤ 0.
This, together with (4.20), yields that µjgj(x̄, vj) = 0, j ∈ J, i.e.,

µj sup
vj∈Vj

gj(x̄, vj) = 0, j ∈ J.

So, we assert by virtue of (4.19) that x̄ satisfies condition (3.2). To finish the
proof, it remains to apply Theorem 3.4. □

5. Conclusions

In this paper, along with optimality conditions proposed in [13], we further
introduced types of non-fractional and fractional dual problems and examined
weak, strong, and converse-like duality relations under assumptions of (strictly)
generalized convex-concavity.
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