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ON A CLASS OF NONSMOOTH FRACTIONAL ROBUST
MULTI-OBJECTIVE OPTIMIZATION PROBLEMS. PART II:
DUALITY™

ZHE HONG, KWAN DEOK BAE, LIGUO JIAO, AND DO SANG KIM'

ABSTRACT. In the previous paper (Hong et al. Appl. Set-Valued Anal.
Optim. 2 (2020), 109-121), the authors did some works on optimality
conditions for a class of nonsmooth fractional robust multi-objective op-
timization problems. In this paper, we further study duality results for
such a class of optimization problems. More precisely, we propose model-
types of both non-fractional and fractional dual problems; then weak,
strong, and converse-like duality relations are investigated, respectively.

1. INTRODUCTION

Duality for fractional multi-objective optimization problems involving lo-
cally Lipschitz functions have received a great number of attention from re-
searchers; see e.g., [7, 12, 16, 17, 23] and the references therein. On the other
hand, due to lack of information or prediction errors, the data of real-world op-
timization problems is often uncertain, i.e., they are not known exactly when
the problem is solved [2-5]. Recently, robust optimization has emerged as a
remarkable deterministic framework for studying mathematical optimization
problems with data uncertainty; see [2-6, 8, 9, 1315, 18, 19, 22, 23] for the-
oretical and applied aspects of this area. In particular, Chuong [6] has stud-
ied duality (and optimality conditions) for robust multi-objective optimization
problem involving nonsmooth real-valued functions.

In this paper, along with optimality conditions proposed in [13], we further
introduce types of non-fractional and fractional dual problems and investigate
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weak, strong, and converse-like duality relations under assumptions of (strictly)
generalized convex-concavity.

In what follows, we recall some symbols and the problem model from [13].
Let K ={1,...,1}, J ={1,...,m} be index sets, and the real-valued functions
Dk, qk, k € K, be locally Lipschitz on R", and g¢;, j € J be given real-valued

functions. Furthermore, denote f(x) := (5 ig; ey ’q’ ;Ei;) for simplicity. For the
sake of convenience, we further assume that py(z) > 0, gx(z) > 0, k € K for
all z € R™. Here after, we use the notation f := (fi,..., fi), where fj := B&

qr’
ke K,and g:= (g1,.--,9m)-
We consider the fractional multi-objective optimization problem in the face
of data uncertainty in the constraints of the form:

(UP) Ming: {f(z) | g;(z,v;) <0, j € J},

where MinRz+ in the above problem will be understood with respect to the

ordering cone R, := {(y1,...,u) |y >0, i =1,...,1}; € R" is the vector of
decision variables, v; € V;, j € J are uncertain parameters, g; : R® x V; — R,
j € J are continuous real-valued functions.

Following the robust approach, we associate with (UP) its robust counterpart:

(RP) Ming:  {f(z) | g;(z,v;) <0, Yv; €V}, j € J}.
In addition, let F' be the feasible set of problem (RP), which is given by
(1.1) F:={zeR"|gj(z,v;) <0, Vv, €V, j€J}

Definition 1.1. We say that & € F is a local Pareto solution to problem (RP)
if and only if there is no z € F and there is neighborhood U of Z such that

(1.2) fe(x) < fr(@), VeeFnU, k€K,

with at least one strict inequality. If in addition all the inequalities in (1.2) are
strict, then one has the definition for local weakly Pareto solution to problem
(RP).

Now, we assume the following two assumptions for the functions g;, j € J,
given in (1.1); see [6, 13] for more detail. The definitions of B(, -) and closedness
for multifunction are given in the beginning of Section 2.

(A1) For a fixed z € R", there exists 67 > 0 such that the function v; €
Vj = gj(r,v;) € R is upper semicontinuous for each = € B(z, 67), and
the functions g;(-,v;),v; € V;, are Lipschitz of given rank L; > 0 on
B(z,0%), i.e.,

l9j(1,v;) — g (w2, v5)| < Ljllz1 — 2|, Yoy, € B(Z,67), Yu; € V.
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(A2) The multifunction (z,v;) € B(Z,07) x V; = 0.g;(,v;) C R™ is closed
at (z,7;) for each v; € V;(Z), where the symbol J, stands for the
limiting subdifferential operation with respect to x, and the notation
V;(z) signifies active indices in V; at z, i.e.,

(1.3) V(@) = {v; € V; | g;(Z,v;) = Gj(2)}
with G;(2) = sup, v, 9;(Z,v;).

Definition 1.2. Let z € F. We say that the constraint qualification (CQ) is
satisfied at z if

0 ¢ co{Udyg;(Z,v;) | v; €V;(@),j€ ]}

Next, by using the parametric approach, we transform the problem (RP)
into the nonsmooth non-fractional robust multi-objective optimization problem
(RP), with a parameter v = (y1,...,7) € Rﬁr.

(RP), Min]Rz+ {f(x) = (pl(x) —mq(x),...,pi(x) — qu(x)) |z € F} ,

where the feasible set F' is same as (1.1).

We organize the rest of the paper as follows. Section 2 provides some pre-
liminaries and notations. In Section 3, we recall the results on optimality
conditions for problem (RP) studied by Hong et al. [13]. Our main findings on
duality are proposed in Section 4. Finally, conclusions are given in Section 5.

2. PRELIMINARIES

Throughout this paper, we will use some notations and preliminary results;
see, e.g., [20, 21]. Let R™ denote the Euclidean space equipped with the usual
Euclidean norm || - ||. The nonnegative orthant of R™ is denoted by R :=
{(x1,...,2n) | z; > 0, i = 1,...,n}. The inner product in R™ is defined by
(x,y) = a7y for all z,y € R"™. The symbol B(z,p) stands for the open ball
centered at x € R™ with the radius p > 0. For a given set 2 C R™, we use co{)

to indicate the convex hull of 2, and the notation x £, % means that z — 7
with x € Q.

A given set-valued mapping F': Q C R™ = R™ is said to be closed at Z €
if for any sequence {x;} C Q, xp — T, and any sequence {y;} C R™, yr — 7,
one has y € F(z).

Given a multifunction F : R =% R™ with values F'(z) C R™ in the collection
of all the subsets of R™. The limiting construction

Limsup F(z) := {y eER™ |Fzp — T, yp — y with yx € F(xy) for all k € N}

r—T
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is known as the Painlevé—Kuratowski upper/outer limit of the multifunction F
at Z, in which N:={1,2,...}.
Given Q C R", and = € , define the collection of Fréchet/regular normal
cone to ) at T by
~ ~ v, — T
N(z;Q) = Nq(z) :== {v € R" | limsup <” ||> < }
Q

T—T

If # ¢ Q, we put N(z;Q) := 0.

The Mordukhovich/limiting normal cone N(Z; ) to Q at T € Q C R™ is ob-
tained from regular normal cones by taking the sequential Painlevé-Kuratowski
upper limits as

N(z; Q) := Limsup ]V(ac, Q).
z&i
If z ¢ Q, we put N(z;Q) := 0.
For an extended real-valued function ¢ : R* — R := [~00, +00] its domain
and epigraph are defined by

dom¢::{x€R"|¢>( <oo}andep1¢—{xu )ER" X R | ¢(x <,u}
respectively.

Let ¢: R™ — R be finite at Z € dom ¢, then the collection of basic subgradients,
or the (basic/Mordukhovich/limiting) subdifferential, of ¢ at Z is defined by

0P(T —{UER"HU —l)EN((x o(z ));epi¢)}.

Recall that a function ¢: R® — R is known as locally Lipschitz at z € R®
with rank L > 0, i.e., there exists p > 0 such that

[¢(z1) = dw2)|| < Lljzr = 22|, Va1, 20 € B(Z, p).

The following concepts of (strictly) generalized convex-concavity at a given
point for locally Lipschitz functions is inspired by [6, Definition 3.9], [12, Defi-
nition 3.7] and [11, Definition 3.11]; see also [13, Definition 3.2].

Definition 2.1. (i) We say that (p, g; q) is generalized convez-concave on
R™ at Z € R™ if for any « € R"™, & € Opp(T), ¢k € Oqi(T), k € K, and
Ny € 0295(Z,v), v € V;(Z), j € J, there exists h € R™ such that
pk(gj) ( ) > <€kah>7 ke Ka
qr(z )—Qk( ) (Ck,h), k€K,
where V;(Z), j € J, are defined as in (1.3).
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(ii) We say that (p,g;q) is strictly generalized conver-concave on R™ at
z € R” if for any z € R™\{Z}, & € Opi(Z), (& € Oqr(Z), k € K, and
Ny € 09;(Z,v), v € V;(Z), j € J, there exists h € R™ such that

—pi(Z) > (&, h), keEK,
z) — qp(Z) < ((p,h), keEK,

9i(@,v) — g;(Z,v) = (o, h), v eEV;(T),j€E
where V;(Z), j € J, are defined as in (1.3).

Remark 2.1. (c.f. [13, Remark 3.2]) We see that if py, k € K, and g;, j € J
are convex (resp., strictly convex), and qx, k € K are concave (strictly concave),
then (p, g; q) is generalized convex-concave (resp., strictly generalized convex-
concave) on R™ at any Z € R™ with h := z — Z for each x € R".

3. PREVIOUS RESULTS ON OPTIMALITY CONDITIONS

In this section, we recall some results on optimality conditions for problem
(RP); see [13] for the proof in detail.

First, we recall the Fritz-John type necessary optimality condition for a local
weakly Pareto solution to problem (RP),.
Theorem 3.1 (c.f. [13, Theorem 3.1]). Let v = Z’;g)), ke K. If z is a local
weakly Pareto solution to problem (RP), then there exist S > 0, k € K and
>0, j € J with 3y creBr+ > e 15 =1, such that

(3.1)
06> Bedpe(@) — Y Brvedan(z) + Y _pjco {Udag; (z,v;) | v; € V;(2)},

kEK keK jed
pj sup g;(%,v;) =0, j € J.
v; EVj

Remark 3.1. If the (CQ) given in Definition 1.2 holds, then B in (3.1) can be
chosen not all zero, and hence, a point T € F is satisfy (KKT) condition (3.1).
Indeed, if B, = 0, for allk € K, then 0 € co{Uazgj(:ﬂvj) |v; €V;(z), ] € J},
which reaches to a contradiction to our assumption that the (CQ) holds; see
the next theorem, which is the Karash—Kuhn—Tucker type necessary optimality
condition for a local weakly Pareto solution to the nonsmooth fractional robust
multi-objective optimization problem (RP).

Theorem 3.2 (c.f. [13, Theorem 3.2]). Let & be a local weakly Pareto solution
to problem (RP), then there exist S, > 0, k € K and p; > 0, j € J with
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> kek B+ ZjeJuj =1, such that

(3.2)
.\ Dr(T _ _ _
0e S au(@n(a) - P 00u() + Spyeo U0y (2.0 |0y € Vy(a)),
keK Tk jed
pj sup g;(Z,v;) =0, j € J,
v; €V

where ap = qf(’}). If we further assume that the (CQ) holds at T, then
ZkEKak 75 0.

Theorem 3.3 (c.f. [13, Theorem 3.3]). Assume that T € F satisfies the con-
dition (3.1) with Y, c ;- Br # 0.
(i) If (p,g;q) is generalized convex-concave at T, then T is a weakly Pareto
solution to problem (RP).

(i1) If (p, g; q) is strictly generalized convez-concave at T, then T is a Pareto
solution to problem (RP).

Theorem 3.4. (c.f. [13, Theorem 3.4]) Assume that T € F satisfies the con-
dition (3.2) with ), o o # 0.

(i) If (p,g;q) is generalized convex-concave at T, then T is a weakly Pareto
solution to problem (RP).

(i1) If (p, g; q) is strictly generalized convez-concave at T, then T is a Pareto
solution to problem (RP).

4. MAIN RESULTS: DUALITY RELATIONS

In this section, we propose model-types of both non-fractional and fractional
problems for problem (RP). Then weak, strong, and converse robust duality
relations between them are examined, respectively. In what follows, we use the
following notation for convenience.

u<vEu—veE —intRlJr, u 4 v is the negation of u < v,

u=veu—ve-RL\{0}, u Ao is the negation of u < v.

Moreover, we also define RY := {u = (uy, p5),5 € J=A{1,....m}i € I; =

{1, . ,ij} | i € Nypy >0,y > O’Zielj Wi = 1} for simplicity.
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4.1. Non-fractional dual model. For z € R", 8 := (B1,...,;) € R, \{0},
vi=(Y1,-..,m) € RZ_H and pu € ]Rli, in connection with the fractional multio-
bjective optimization problem (RP), we consider its non-fractional robust multi-
objective dual problem of the form:

(RD),  Maxgy {J(z8.0) = (o) | (2.8.00) € P }

where the feasible set Fp, is defined by

P i= {21800 € B x (RL\(0)) xR

0€ > Brdpr(z) = Y Bryedar(2)

keK keK

A i (O mgimgi)s D pigi(z05) > 0,m5i € {Udag;(z,v5) | vji € Vj(z)}},

jeJ i€l jeJ

where v; € V;(2), V;j(2) is defined as in (1.3) by replacing Z with z, and j € J,
1€ Ij = {1,,%}

Definition 4.1. A feasible point (z, 3, i) € Fp, is said to be

(i) a local Pareto solution to problem (RD).,, if and only if there is neigh-
borhood U of (z, 3, 1) such that

f(z8,1) — [(2,B,1) ¢ RA\{0}, V(z,B,u) € Fp, NT.

(ii) a local weakly Pareto solution to problem (RD).,, if and only if there is
neighborhood U of (Z, 8, i) such that

f(z,8.n) — f(2.B,7) ¢ ntR',,  V(z,B,u) € Fp, NU.

The following theorem describes weak duality relations between the primal
problem (RP) and the dual problem (RD),.

Theorem 4.1 (Weak duality). Let x € F' and (2,0, 1) € Fp, be given.

(i) If (p,g;q) is generalized convez-concave on R™ at z, then

f(@) 4 f(z, 8, 1)

(ii) If (p, g;q) is strictly generalized convez-concave on R™ at z, then

) £ f(z, B, ).

Proof. Since (z, 8, 1) € Fp,, there exist B > 0, & € Ipr(2), ¢k € Oqi(2), Vi =

pkEz; ke K with 7, B #0,and p; >0, j € J, pj; >0, 15 € 0-9;(2,vj4),
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Vj; € Vj(z), 1€ Ij = {1, . ,ij}, ij eN, Zielj:uji =1, such that

0= Zﬁkﬁk - Zﬁk%(k + Zﬂj(zl‘jmﬁ)’

keK keK jeJ el
(4.1) > 1igi(z,05) = 0.
jeJ
We first justify (i). Assume to the contrary that
f(z) < f(z5,1).

In other words,

(4.2) F(2) = F(z. B, 1) € —intRL,.

Along with the generalized convex-concavity of (p, g;¢) on R™ at z, for such z,
there exists h € R" such that

0="> Bk h) = Y Bewl(Crrb) + D _n (ZMji(Uji, h>)

kEK kEK jed  iel,
< Zﬁk (pr(@) = pi(2)) = Zﬁk% (ar(z) — ai(2))
keK keK
+> (Z,Uji (95 (2, v5:) — g;(2, vj,-)])
jeJ  iEl;
(4.3)
= Bepr(@) = > Bewkar(z) + > _p; (Zﬂji [95(2,vji) — g;(2, Uji)D~
keK keK jeJ  iel;

Due to the fact that = € F, one has
> hy (Zﬂjigj($7vji)) <0.
jed  iel;

Thus, it follows from (4.3) that

0< > Bep(@) = Y Bryear(®) — Y _ny (Zﬂjz'gj(zvvji))

keK ek jes  iel
<D Biok(x) = Y Bryear (),
keK ek

where the last inequality holds true due to (4.1). Since 8 € R’ \{0}, we have
there is kg € K such that

(44) 0< Pk, ({,E) ~ VkoGko (LL')
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Observe that the inequality (4.4) is lead to the ko-th component of f(z, Byp) =

Vro < 5:083 = the ko-th component of f(z), which contradicts (4.2).
‘0

Now, let us prove (ii). Assume to the contrary that
f(@) % f(z,B,m),
which means
(4.5) @) = f(=.8,1) € ~RY\{0}.

By the strictly generalized convex-concavity of (p, g;q) on R™ at z, for such
x, there exists h € R™ such that

0="> Brrh) = Y BemlCrh) + D _p (Zug‘i@?ﬁ, h>)

keK keK jed  iel,
<> Belpe(x) — pe(2)) = > Beve (an(z) — au(2))
keEK keK
+) (Zﬂji [95(2,v5i) — g5 (2, sz‘)])
jes  iel
= Bipr(@) = Y Bewman(@) + Y (Zﬂji (95 (2,v56) — 9;‘(%%@‘)})-
ke kEK jeJ el

Similarly as in the proof of (i), we arrive at

0< Zﬁkpk(a?) - Zﬁk'Yka(x)'

keK keK
This entails that there is ky € K such that

0< Pko ($> — Vkolko (CC)

Equivalently, the ko-th component of f(z,ﬁ,u) = Vi < z:ogz; = the ko-th
0

component of f(z), which contradicts (4.5). Thus, the proof is complete. O

The next theorem provides strong duality relations between the primal prob-
lem (RP) and the dual problem (RD),.

Theorem 4.2 (Strong duality). Let T be a local weakly Pareto solution to

problem (RP) such that the (CQ) is satisfied at this point. Then there exists
(B,m) € (RL\{0}) x RY such that (z,B,m) € Fp, and f(z) = f(%,5,p).

Furthermore,

(i) If (p,g;q) is generalized convex-concave on R™ at any z € R", then
(z, B, ) is a weakly Pareto solution to problem (RD),.
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(i1) If (p, g;q) is strictly generalized convez-concave on R™ at any z € R™,

then (z, 8, it) is a Pareto solution to problem (RD),.

Proof. By Theorem 3.1, we find 8, > 0, & € Opp(T), ¢k € Oqi(T), v = an g)
k€ K with Y, B 7é0 and p; > 0,7 € J, pjs > 0, 155 € 0295(Z,vj5),
vj; €V;(Z), i€ l; ={1,...,4;},i; €N, Elej_uﬂ—lsuchthat

(4.6) 0= Zﬁkék - Zﬂkak + Zug Z:uﬂnﬂ

jedJ i€l

(4.7) fj Sup gj(x,vj) =0, j€J
v €V;
Since vj; € V;(), we have g;(Z,v;i) = sup,,ey,9;(Z,v;) for j € J, and
iel; ={1,...,4;}. Thus, it follows from (4.7) that u;g,(z,v;;) =0 for j € J
and 7 € I;. This entails that

(4.8) Zuj(zujigj@%)) = Z(Zﬂjiujgg‘(@vﬁ)) =0.

jeJ el jeJ el
Letting 3 := (B1,...,53) € RL\{0} and i := (p;, pj;). Along with (4.6) and
(4.8), we conclude that (z, 3, i) € Fp,. Thus, f(z) = f(z, B, ).

(i) As (p,g;q) is generalized convex-concave at any z € R™, by invoking
Theorem 4.1 (i), we obtain
f@,B.1) = f(z) A f(2,8, 1)
for any (2,3, 1) € Fp,. This means that (z, 3, ) is a weakly Pareto solution
to problem (RD),.
(ii) Since (p, g;q) is strictly generalized convex-concave at any z € R"™, by
invoking Theorem 4.1 (ii), we assert that

B, i) 2 f(z. B, 1)

for any (2,3, ) € Fp,. This means that (z, 3, i) is a Pareto solution to prob-
lem (RD),. O

Now, we present converse-like duality relations between the primal prob-
lem (RP) and the dual problem (RD),.

Theorem 4.3 (Converse-like duality). Let (z,[,fi) € Fp,.

(i) If x € F and (p,g;q) is generalized convex-concave on R™ at T, then T
is a weakly Pareto solution to problem (RP).

(ii) If z € F and (p, g;q) is strictly generalized convez-concave on R™ at Z,
then Z is a Pareto solution to problem (RP).
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Proof. Since (z,8,j1) € Fp,, there exist 8 := (B1,...,0) € ]Rl_k\{O}, & €
apk(j)v Ck € 6Qk‘(j)a Ve = 2:5537 k€ K7 and = (/u’juu'ji)v Hj > 07] € J7 Hji >
0, nji € 3mgj(§:,vji), Vji € Vj(.f), 1 € Ij = {].,...,ij}, ij €N, Zieljﬂji =1,
such that

I I
(4.9) 0= Br&r— > Brumle + > i (Zﬂjiﬂji)»
k=1 k=1

jeJ  iel,

(4.10) > g5 (2, v5) > 0.

jeJ
Let & € F. Then g;(z,v;) <0, for all v; € V;, j € J, and thus, p,9;(z,v;) <O0.
This, together with (4.10), yields

1ig;(%,v5) =0, j € J,

i.e.,
pj sup g;(z,v;) =0, j€J.
'Ujer
So, we assert by virtue of (4.9) that T satisfies condition (3.1). To finish the
proof, it remains to apply Theorem 3.3. 0

4.2. Fractional dual model. For z € R", a := (a,...,o) € R, \{0}, and
JIS Rﬁ, in connection with the fractional multiobjective optimization prob-
lem (RP), we consider its fractional robust multiobjective dual problem of the
form:

R Y ()

where the feasible set Fp, is defined by

Fp, = {(z,a,u) e R" x (R, \{0}) x RY

(27a7/’(‘) GFD2},

0e Zak (5pk(z) - I;Z(z)@%(z))

fex ()

A i (O mgimgi)s D> migi(z,05) = 0,mji € {Udag;(2,v5) | vi € Vj(z)}},

jeJ i€l jeJ

where v; € V;(2), V;(z) is defined as in (1.3) by replacing Z with z, and j € J,
1€ IJ = {1,,%}

Definition 4.2. A feasible point (Z, &, i) € Fp, is said to be

(i) a local Pareto solution to problem (RD), if and only if there is neigh-
borhood U of (Z, &, i) such that

f(zvaau)_f(576‘vﬂ) ¢Rl+\{0}7 vxEFWngU-
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(i) a local weakly Pareto solution to problem (RD), if and only if there is
neighborhood U of (Z, @, fi) such that

flz,a,p0) — f(2,a,0) ¢ intRy, Va € Fp,NU.

We first show the weak duality relations between the primal problem (RP)
and the dual problem (RD).

Theorem 4.4 (Weak duality). Let x € F' and (z,a,p) € Fp,.
(i) If (p,g;q) is generalized convez-concave on R™ at z, then

f(@) & f(z 0, p).
(i) If (p,g;q) is strictly generalized convex-concave on R™ at z, then

f(@) 2 J(z,a,p).

Proof. Since (z,a, 1) € Fp,, there exist ap > 0, & € Opi(2), ¢ € Oqi(2),
k € K with ZkeKak 7& 0, and 1% > 0, j S J, Hji > 0, Nnji € Bmgj(z,vji),
Vji € Vj(Z), 1€ Ij = {1, . ,ij}, ij €N, Zieljuji =1, such that

0="> o (fk - pk(z; Ck) +) p (Zﬂjinji)a

keK ik jeJ  iel,
(4.11) Zujgj(z,vj) > 0.

JjeJ

We first justify the item (i). Assume to the contrary that

f(@) < (2,0, p).

This means that

(4.12) f(x) = f(z,0,p) € —intRY,..
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By the generalized convex-concavity of (p,g;q) on R™ at z, for such x, there
exists h € R™ such that

0= o ({6t~ 252G )+ S (S )

keK jeJ iel;
o xT) — z _pk(Z) xT) — z
> @) =m0 - E o) - )
+ Zﬂj (Z/Mz‘ [9j (2, v55) — g;(z, vji)}>
jeJ i€l

(4.13)

— Zak {pk z } +Zug(z,uﬂ g;(z,vj;) gj(z,vji)]).

keK jeJ il

Since x € F\ then }; ;u; (Zi617 wiig;(, vji)) < 0. Thus, it yields form (4.13)
that

0 S o pute) = 280 o)] = S (L a0

s i€l

Moreover, since (4.11) is valid, thus >, ;u; (Ziezj:“jigj(za vﬂ)) >0, and so

0< Zak {pk(ﬂi) - Z:Ez; Qk(x)]-

keK

This entails that there is kg € K such that

Pk (2)
Qo \ T ),
ar, (o) ™)
due to a € R, \{0}. The inequality (4.14) is lead to the ko-th component of
flz,a,p) = szEZ§ < 2’“083 = the ko-th component of f(x), which contra-
dicts (4.12). Thus, the item (i) is proved.
Now, we show the item (ii). Assume to the contrary that

(4.14) 0 < pro () —

ie.,

(415) f(.’L‘) - f(zﬂa7u> € _Ri\{o}
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By the strictly generalized convex-concavity of (p, g;q) on R™ at z, for such z,
there exists h € R™ such that

0= o (t6m) - 225

) + ZMJ(ZMN Mjir h )

keK jedJ icl;
(2)
< k;(ak {pk(x) —pr(z) — z:(Z) (ax () — Qk(z))}
+ jze;uj (;Hji [gj(% vji) — 95(2, Uji)})
= S aufte) - B ] 5 (Sl 21 )
keK JjeJ €1,

A similar argument as in the proof of item (i), we arrive at

o< Yoot 2]

keK

This entails that there is ky € K such that

Prol2) ()

G (2)

Equivalently, the ko-th component of f(z,a,p) = pkog? < zZOEz; = the ko-

th component of f(x). which contradicts (4.15). Thereby, the desired result
follows. O

0< Pk, (x) —

Next, we proposes strong duality relations between the primal problem (RP)
and the dual problem (RD).

Theorem 4.5 (Strong duality). Let T be a local weakly Pareto solution to
problem (RP) such that the (CQ) holds at this point. Then there exists (&, ji) €
(RIA\{0}) x RY such that (z,a,p) € Fp, and f(z) = f(Z,a, ). Purthermore,

(1) If (p,g;q) is generalized convez-concave on R™ at any z € R™, then
(Z, &, i) is weakly Pareto solution to problem (RD).
ii) If (p,g;q) s strictly generalized convex-concave on R™ at any z € R™,
g Y Y
then (Z,a, i) is Pareto solution to problem (RD).

Proof. Along with Theorem 3.2, we find ay > 0, & € Ipi(T), C € Jqi(T),
ke K with 3, cpar # 0, and p; > 0, j € J, pj; > 0, nji € 0295(Z,v5),
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Vji € Vj(i‘), 1€l = {1,. .. ,ij}, i; €N, Eitel’Lji =1, such that

(4.16) 0= Zak (fk - ‘Z:((g Ck) + Zuj (ZNjiﬂji)a
jed

keK icl;

(4.17) pj sup g;(z,v5) =0, j € J.

v; EVj
Since vj; € V;(), then g;(Z,v;:) = sup,, ey, 9;(T,v;) for j € J and i € I; =
{1,...,4;}. Thus, it stems from (4.17) that p;g,(Z,v;;) = 0for j € Jand i € I,.
This entails that

(4.18) ZM(Zﬂjigg‘@%i)) = Z(Zﬂjiﬂjgj(favji)) =0.
jed i€l jed iel;
Letting & := (o, ..., o) € RL\{0}, and ji := (Mj"ujﬂ)' It follows from (4.16)
and (4.18) that (z,a, i) € Fp,. Observe that f(z) = f(z, @, ii).
(i) As (p,g;q) is generalized convex-concave at any z € R™, by invoking
Theorem 4.4 (i), we obtain

.f(za@aﬁ) :f(‘i‘) 74f(2>a7/‘)

for any (z,a,u) € Fp, ie., (Z,a,n) is a weakly Pareto solution to problem
(RD).

(i) Since (p, g;q) is strictly generalized convex-concave at any z € R", by
invoking Theorem 4.4 (ii), we assert that

f@a,m) £ f(z,a.p)

for any (z, o, ) € Fp,, that is, (Z, &, i) is a Pareto solution to problem (RD).
U

Finally, we present converse-like duality relations between the primal prob-
lem (RP) and the dual problem (RD).

Theorem 4.6 (Converse-like duality). Let (z,a,\) € Fp,.

(i) If x € F and (p,g;q) is generalized convex-concave on R™ at T, then T
is a weakly Pareto solution of problem (RP).

(ii) If T € F and (p, g;q) is strictly generalized convez-concave on R™ at T,
then T is a Pareto solution of problem (RP).

Proof. Since (Z,a,f1) € Fp,, there exist @ = (a1,...,o) € RL\{0}, & €
Ipi(Z), G € Oqi(2), k € K, and [ := (pj,p5:), py = 0, j € J, pjz > 0,
Nji € 6ng(5c,vji), Vj; € Vj(if), 1€ Ij = {1,. .. ,Z'j}7 1; € N, Zieljluj’i =1, such
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that

- (@)
(4.19) 0= k;(ak (fk ~ W@ @) + j;uj (;u]m)
(4.20) > wig;(,0;) > 0.

JjeJ
Let & € F. Then g;(z,v;) <0, for all v; € V;, j € J, and thus, p,9;(z,v;) <O0.
This, together with (4.20), yields that u,g;(Z,v;) =0, j € J, ie.,

pj sup g;(%,v;) =0, j € J.

vi€Vj
So, we assert by virtue of (4.19) that Z satisfies condition (3.2). To finish the
proof, it remains to apply Theorem 3.4. (]

5. CONCLUSIONS

In this paper, along with optimality conditions proposed in [13], we further
introduced types of non-fractional and fractional dual problems and examined
weak, strong, and converse-like duality relations under assumptions of (strictly)
generalized convex-concavity.
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