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ON SOME PROPERTIES OF CONJUGATE RELATION AND
SUBDIFFERENTIALS IN SET OPTIMIZATION PROBLEM

YOUSUKE ARAYA

ABSTRACT. In this paper, we first give new definitions of set-valued con-
jugate relation based on comparison of sets introduced by Jahn-Ha in
2011. Then we give some types of weak duality theorems. Next, by using
nonlinear scalarizing technique for set, we present a strong duality the-
orem. We also give some continuity properties of conjugate relation for
set-valued map. Lastly, we give some definitions of subdifferentials for
set-valued map and investigate its properties.

1. INTRODUCTION

Let Y be a topological vector space ordered by a closed convex cone C' C Y.
Let X be a nonempty set and F : X — 2 a set-valued map with domain X
(F(x) # 0 for each z € X). The set-valued optimization problem is formalized
as follows:

(P Optimize F(x)

Subject to =z € X
The above problem is based on comparison among values of F, that is, whole
images F'(x) (for details see Kuroiwa-Tanaka-Ha [30] and Jahn-Ha [21]) and
seems to be more natural for set-valued optimization problem.

For a given vector optimization problem, there are several approaches to
construct a dual problem. One of the difficulties is in the fact that the minimal
point in vector optimization problem is not necessarily a singleton. However,
in general, it becomes a subset of the image space. There are at least four main
ideas to overcome the above difficulties (see [5, 33] and their references therein).
The first one is the usage of scalarization in the formulation of the dual problem.
The second one is based on the observation that a dual optimization problem
is set-valued (see [24, 25, 39, 41]). The third one is based on solution concepts
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with respect to the supremum and infimum in the sense of vector lattice (see
[32, 33]). The fourth one gravitates around Wolfe and Mond-Weir duality.

This paper is a continuous research of [3]. We introduce a new approach
to obtain duality theory in set optimization problem. We adopt the second
type approaches to derive weak duality theorems in the framework of set opti-
mization problem. To derive strong duality theorems, we employ the first type
approach which is a nonlinear scalarizing technique for sets. We also investigate
some properties of conjugate relation and subdifferentials in set optimization
problem.

The organization of this paper is as follows. In section 2, we give some
preliminaries of vector optimization problem and set optimization problem.
In section 3, we introduce some types of nonlinear scalarizing technique for
sets [1, 3] which are generalization of Gerstewitz’s scalarizing function for the
vector-valued case [9, 11, 12]. Section 4 is the main results. First, we give
new definitions of set-valued conjugate relation based on comparison of sets
(l1&u type [21]). The new definitions, which are inspired by Chapter 7 of [5],
are natural extension of vector-valued conjugate function. Then we give some
types of weak duality theorems with respect to [&u type set relation. We also
give some continuity properties of conjugate relation for set-valued map. Next,
by using nonlinear scalarizing technique for set, we present a strong duality
theorem with respect to [&u type set relation. Lastly, we give some definitions
of subdifferentials for set-valued map and investigate its properties.

2. MATHEMATICAL PRELIMINARIES

Let R™ be a Euclidean space and R} := {z € R" | 2y > 0,22 > 0, ..., x,, > 0}
a nonnegative orthant of R™. Throughout of this paper, let X be a Hilbert
space, Y a topological vector space and Oy the origin of Y. For a set A C Y,
intA and clA denote the topological interior and the topological closure of A,
respectively. We denote the set of linear continuous mappings from X to Y by
L(X,Y). We denote V by the family of nonempty subsets of Y. The sum of
two sets V1, Vo € V and the product of « € R and V € V are defined by

Vi+Voi={vi+ve | v €Vi,v9 €Va} aV:={av|veV}

In this paper, we assume that C' C Y is a closed convex cone, that is, clIC' = C,
C+CcCCandt-CcCCforallte]|0,oc0).

2.1. Preliminaries of vector optimization. A cone C is called pointed if
CN(—C) = {0y} and solid if intC # §.

Definition 2.1. For a,b € Y and a solid convex cone C' C Y, we define

a<cb by b—acC.
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Proposition 2.2. Forz €Y andy €Y, the following statements hold:
(i) = <¢ y implies that x + z <c y+z forall z €Y,
(il) = <¢ y implies that ax <c ay for all a > 0,
(i) <¢ is reflexive and transitive. Moreover, if C is pointed, < is anti-
symmetric and hence a partial order.

We say that a point a € A C Y is a maximal [resp. weak maximal] point of
A if there is no @ € A\ {a} such that a <¢ a [resp. a <;t @). The above
definition is equivalent to

An(a+C)={a} [resp. AN (a+intC) = 0.

We denote by Max(A4; C')[resp. wMax(A;intC)] the set of maximal [resp. weak
maximal] points of A with respect to C' [resp. intC], respectively. We can easily
see that

Max(A; C) C wMax(A4;intC) C A.

2.2. Preliminaries of set optimization. We consider several types of binary
relationships on V by using a solid convex cone C' C Y.

Definition 2.3 (|21, 30]). For A, B € V and a solid convex cone C C Y, we
define

(lower type) A glc B by BCA+C,
(upper type) A<{ B by ACB-C,
(lower and upper type) A Slg’“ B by BCA+C and ACB-C.

Proposition 2.4 (Further investigation of [1, 31]). For A, B, D €V, a,b€Y
and a > 0, the following statements hold.
(i) A glc B implies A+ D glc B+D and A <} B implies A+D < B+D.
(ii) A <L B implies aA <L, aB and A <% B implies aA <% aB.
(iii) Slc and <% are reflexive and transitive.
(iv) A Slc‘%“‘ B implies A SIC B and A §ZC&“ B implies A <{. B.
v) A <L B and A <% B are not comparable, that is, A <\, B does not
imply A <% B and A <Y B does not imply A <L, B.
(vi) A <% b implies A Slc b and a glc B implies a < B.
Definition 2.5 ([34]). It is said that A € V is
(i) C-closed [(—C)-closed] if A+ C [A— C]is a closed set,
(ii) C-bounded [(—C)-bounded] if for each neighborhood U of zero in Z

there is some positive number ¢ > 0 such that

AcCctU+C [AcCtU-C],
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(iii) C-compact [(—C)-compact] if any cover of A the form {U, + C| U,
are open} [{U, — C| U, are open}] admits a finite subcover.

Every C-compact set is C-closed and C-bounded. We denote cl(V)¢ by the
family of C-closed subsets of Y and cl(V)_¢ the family of (—C')-closed subsets
of Y, respectively.

Definition 2.6 ([18]). It is said that A € V is C-proper [(—C)-proper] if
A+C#Y [A-—C#Y].

We denote V¢ by the family of C-proper subsets of Y and V_¢ the family of
(—C)-proper subsets of Y, respectively.

Introducing the equivalence relations

A~B<= A<, B and B<L A,
A~y B<= A</ B and B <{ A,

A~y B<= A<¥" B and B <" A,

we can generate a partial ordering on the set of equivalence classes which are
denoted by [-]!, [-]* and []***, respectively. We can easily see that

AeBl«<= A+C=B+C,
AeB*«<—=A-C=B-C,

AcB*" <= A+C=B+C and A-C=B-C.

Definition 2.7 ({[u, [{&u]-minimal and [[u, [&u]-maximal element). Let S C V.
We say that A € S is a l[u, [&u]-minimal element if for any A € S,

A §g“’l&"] A implies A §g“’l&u] A.
Moreover, we say that A € S is a l[u, [&u]-maximal element if for any A € S,
A gg“’l&“] A implies A Sg"’l&u} A.

We denote the family of [[u, [&u]-minimal elements of S by {[u, (&u]-Min(S, C)
and the family of I[u, [&u]-maximal elements of S by [u, [&u]-Max(S, C).
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3. NONLINEAR SCALARIZATION

In this subsection, we assume that k% € C'\ (—C). In 1980s, Gerstewitz [9]
introduced a nonlinear scalarizing function in vector optimization problem. The
nonlinear scalarizing function is known as the Gerstewitz’s function. Agreeing
inf ) = oo, we define pc ko 1 Y — (—00, 00],

pow(y) =inf{t e R|y <c th’} =inf{t e R|y € th’ — C}.

The above scalarization method, which is also found in a similar form [36],
contains the linear scalarization as a special case. After in [10, 11], they de-
rived the essential properties of the Gerstewitz’s function in vector optimization
problem, for instance, monotonicity properties, sublinear properties. Also, the
scalarizing function ¢¢ yo has a dual form. Agreeing sup () = —oo, we define
Yoro 1Y — [—00,00)

Yoo (y) =sup{t e R[th® <c y} =sup{t eR|y € th* + C'}
(ko (y) = —thop (—y)).

These functions have wide applications in vector optimization (see also Luc [34],
Gopfert-Riahi-Tammer-Zalinescu [12]).

The investigation of scalarizing functions for sets begun at around 2000. In
the 2000s decade there were four important papers (see [7, 8, 16, 18]). In the last
decade, many authors have been investigated sublinear scalarizing technique for
set optimization problem ([1, 2, 3, 13, 14, 17, 23, 27, 28, 29, 35, 37, 42] and
their references therein).

In this section, we investigate detailed properties of the following nonlinear
scalarizing functions for set, which are natural extension of ¢¢ ko and Ye po.

Agreeing inf ) = co and sup () = —oo, we define hl ;, b, 14 1V — [—o00, o]

Rt (V) = inf{t e R|V <l {tk°}} =inf{t e R[th® € V + C},

1

inf

ve(V)=inf{t e R|V < {tk°}} =inf{t e R|V C th® — C'},

e (V) = inf{t € R|V <™ {tk°}}
=inf{teR|tk® € V+Cand V C tk’ - C},

! &u .
and Ay, héyps oy YV — [—00, 0]

hip(V) =sup{t € R|{tk"} <. V} =sup{t e R|V C tk® + C},

sup

he (V) =sup{t e R|[{tk°} <¢. V} =sup{t e R|tk® € V — C},

sup
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héﬁ‘;‘(V) =sup{t € R |{tk0} g%‘“ V}
=sup{t eR|V Ctk®+Cand tk* € V - C}.
The functions Al ., h¥ . A& pl hY B play the role of utility functions.

inf? "Yinfs "Yinf > '®sup>’ “sup’ '“sup
By the definitions of the above scalarizing functions for sets, we obtain the

following relationships.

=

Proposition 3.1 (see also [1, 3]). The following statements hold;
(1) hiup (V) = =hiye(=V);

(H) hgup(v) = _hgnf(_v)’.

(i) Ay (V) < i (V) = hig (V)

(iv) hi (V) = hup, (V) < By (V)

(V) Ay (V) = —higi (=V).

Proof. (iii) (vi) Using the following inclusions
(VeviVctk®—Cyc{VveV|th’eV+C} and
{VeviVvci®+Cyc{veV’ev-Cl,
we obtain ht (V) = hI§*(V) and RS (V) = AL, (V). The inequality parts

are from [3].

(v) Combining conclusion (i), (iii) and (iv), we obtain the conclusion. O

Definition 3.2. We say that the function f :V — [—00,00] is <l -increasing
if Vi <L Va implies f(V1) < f(Va). The definitions of <%-increasing and
< increasing are similar to the above one.

3.1. Infimum type. In this subsection, we give several properties of infimum
type scalarizing functions for sets, which is the revised version of [1]. The
reader can check that Lemma 3.3 and 3.4 are almost the same as Corollary 3.3
and 3.5 in [1], respectively. However, the above Corollaries in [1] have some
mistakes:
e (ii) of Corollary 3.3 in [1] [h! (V) <t <= tk" € V + (] is wrong,

e (vii) and (viii) of Corollary 3.5 in [1] [if k° € intC then (vii) V C

th —intC < h¥(V) < t, (vili) h¥; is strictly <{,t¢-increasing]
are wrong.

Lemma 3.3 (l-infimum type [1, 3]). Let k° € intC. The function bl : Vo —
(=00, 0] has the following properties:

(i) A (V) <t <= th® € cl(V +C);
(ii) n!, is <L -increasing;
(iil) Al (V + AKO) = hl (V) + X for every X € R;

inf inf
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(IV) V € [V]l = hgnf( A) hlnf( )

(v) hl . is sublinear (that is, for V1,Va € V and a > 0, hi (V1 + Vo) <
hlnf(Vl) + hmf(vvz) and hmf(avl) - ahmf(vl))!’

(vi) hi . achieves a real value;

(vii) hfnf(V) <t < tk" € V +intC;

(viil) A, is strictly Sintc—mcreasmg.

Lemma 3.4 (u and [&u-infimum type [1, 3]). Let k° € intC. The function
R (= hi&) 1V — (—o0,00] has the following properties:
(i) he(V) <t < V Ctk" - C;
(i) h¥, is <Y-increasing [h¥; is <!&“-increasing);
(iii) mf(V + Ak0) = h?nf( )+ A for every A € R;
(V) V € [V] = h’in ( ) - hlnf( ) [V € [V]l&u = h’mf( ) = hfnf(v)L
v) hits is sublinear;
(vi) hi (V) <t=V C tk° —intC.
Moreover, if k° € intC and V is (—C)-bounded then h¥; has the following
property:
(vil) hl; achieves a real value.
Furthermore, if k° € intC' and V is (—C)-compact then h*
properties:
(viii) V C tkY —intC = h¥ (V) < t;
(ix) hiyg is strictly < ~-increasing  [hj;

inf

e

¢ has the following

1n

is strictly <l&é‘c increasing].

3.2. Supremum type. Using Proposition 3.1, we obtain the following Lem-
mas in a similar way as Lemma 3.3 and Lemma 3.4.

Lemma 3.5 (l-supremum type). Let k° € intC. The function hsup YV =
[—00,00) has the following properties:

() hl (V)>t — VCtk'+C;

sup
is <\.-increasing;

) bup

(iii) Sup(V + Ak0) = héAup( )+ A for every X € R;

(iv) V€ [V]' = hiy, (V) = hiyp (V)

(v) h bup is super-additive and positively homogeneous (that is, for Vi, Va €
Voand o > 0, bl (Vi + Vo) > bl (Vi) + bl (Va) and bl (aVy) =
ahiup(vl))z

(vi) hl,(V) >t =V C tk” + intC.

Moreover, if k € intC and V is C-bounded then h'

sup

has the following property:

. l .
(vii) hg,p, achieves a real value.
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Furthermore, if k° € intC and V is C-compact then héup has the following
properties:
(viil) V Ctk® +intC = hl, (V) > t;

(ix) hly, is strictly Sintc-increasmg.
Lemma 3.6 (u-supremum type). Let k° € intC. The function hl,, : V_c —
[—00,00) has the following properties:

(i) hi,(V) >t = th® e cl(V = C);

(ii) hY,, is <&-increasing;

sup
(iii) h,,(V + k%) = e (V) + X for every A € R;

sup

Ve V] = ht (V) =h% (V);

)
)
) sup sup
(v) héyp s super-additive and positively homogeneous;
)
)
)

v

3 u y .
(vi) h&,, achieves a real value;

(vii) At (V) >t < tk® € V —intC;

sup

h 18 strictly Sintc-mcreasmg.

(vii) h,,

3.3. Inherited properties of continuity and convexity for set-valued

map.

Definition 3.7 (l&u-C-convexity). Let K be a convex set in a real vector
space X. A set-valued map F': X — V is said to be [&u-C-convex on K if for
each 21,22 € K and A € [0, 1], we have

Fzy + (1 = Nag) < NF(21) + (1 = N)F(22).

Definition 3.8 (C-lower semi-continuity). Let X be a topological space. A
set-valued map F : X — V is said to be {[u,[&u]-C-lower semi-continuous at
X if the set

{z € X|F(z) < vy
is closed for all V € V.
Definition 3.9 (strong C-lower semi-continuity). Let X be a topological space.
A set-valued map F': X — V is said to be
(i) strong I-C-lower semi-continuous at X if the set
{r € X|F(z) <¢ V}

is closed for all F(z) € cl(V)_¢c and V €V,
(i) strong u-C-lower semi-continuous at X if the set

{z € X|F(x) <¢ V}
is closed for all V' € cl(V)_¢,
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(iii) strong l&u-C-lower semi-continuous at X if the set
{z e X|F(x) <&V}
is closed for all F(z) € cl(V)—¢ and V € cl(V)_¢.
By using (ii) of Lemma 3.4, we obtain the following properties.

Lemma 3.10. Let K be a convex set in a real vector space X and k° € intC.
If a set-valued map F : X — V is [&u-C-convex, then hi4(F(-)) is convex on
K.

Lemma 3.11. Let X be a topological space and k° € intC. If a set-valued
map F : X — V is [&u-C-lower semi-continuous, then hi$&(F(-)) is lower
semi-continuous.

4. MAIN RESULTS

Let H be a Hilbert space and let f : H — (—o00,00] be a proper function.
Then we define the conjugate and biconjugate function of f as follows:

@)= igg{<x,x*> - f(2)},
[ () == sup {(z,2") — f*(z")}.

z*cH
The following result is the one of the most fundamental theorem in duality
theory.

Theorem 4.1 ([38]). Let H be a Hilbert space and let f : H — (—o00, 0] be a
proper convex lower semicontinuous function. Then f** = f.

In this section, let C' be a solid closed convex cone. We consider the conjugate
and biconjugate of set-valued map F' : X — V and investigate its properties.
Moreover, based on the proof of Theorem 4.1 in [38], we extend Theorem 4.1 to
set-valued map by using classical Hahn-Banach theorem and nonlinear scalar-
izing technique mentioned in Section 3.

4.1. Conjugate relations and weak duality. First, we look back on a the-
ory of conjugate duality in vector optimization. We denote the set of m x n
matrix by R™*".

Definition 4.2 (Tanino-Sawaragi [39, 40, 41]). Let f : R™ — R™ be a vector-
valued function. Then the conjugate function of f, f* : R™*™ — V| is defined
by the following form

Fe(ayi=Max (U (e - fo))mz),

rER™
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By reiterating the operation f — f* on f*, we define the biconjugate of f,
¥ :R™ =V, by the following form

(2) Max( U {4z- (A} Rm>

AgRmxn

However, generally speaking, f*(A) is a set-valued mapping. To overcome
the difficulty, Kawasaki [24, 25] introduced set relation on V. Based on his
results, we presented new definitions of the biconjugate of f.

Definition 4.3 ([4]). For f*(A4) # 0, we define f;**, f* :R" — V by

() := I-Max (A gxn[Ax—f*(A)],Ril),
fittaymudax (o= faLRY).
AgRmxn

In a similar way as the above, we also gave new definitions of set-valued
conjugate maps in infinite dimensional space as a natural extension of [4, 39,
40, 41].

Definition 4.4 (Araya [3]). Let F' : X — V be a set-valued map. Then the
conjugate function of F', Fj*, F¥ : L(X,Y) — V, are defined by the following
form

FF(T) = I-Max < U Tz F(:z:)],C),

FX(T) := u-Max (l@([h — F(z)], C) :

Definition 4.5 (Araya [3]). For F(T) # 0 and F;(T) # 0, we define
Epr B B Eyy o X =V by

lu '+ ul >
Fi*(z) := I-Max U [Tz-F (D), 0)7
TeL(X,Y)
Fi*(x) == -Max ( U [TxF;(T)],c*),
TeL(X,Y)
F*#(x) := u-Max ( U [Tz-Fr (1), C),
TeL(X,Y)

Fr*(z) := u-Max ( U [rz- F;(T)LC).

TeL(X,Y)

In a similar way as the above, we give new definitions of set-valued conjugate
maps with respect to (&u set relation.
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Definition 4.6. Let F' : X — V be a set-valued map. Then the conjugate
function of F, Fj§,,, : £L(X,Y) — V, is defined by the following form

Fjeo(T) := 1&u-Max ( | J [Tz - F(x)], c).
zeX
Moreove, for Fj;,, (T) # 0, we define Fjgf, : X — V by

Fig () == [&u-Max U [Tz - Fe, (D), c).
TeL(X,Y)
In a similar way as [3], we obtain the following weak duality theorem.

Theorem 4.7 (Weak duality). Let F : X — V be a set-valued map. Then the
biconjugate of F' has the following property:

Fig,(z) <& F(a).
Proof. By the definition of F},, , we have
Tx — F(z) <L Fjy,(T) and Tx — F(z) <Y Fj,(T) Vz € X, VT € L(X,Y),
(Flgu(T) CTz—F(z)+C and Tz—F(x) C Fj},,(T)—C). Then we obtain
the following inclusions:
Tx — Fj,,(T) C F(x) = C and F(z) C Tz — F,,(T)+C,

that is, Tx — Fj,,(T) <& F(z) and Tz — Fj,,(T) <4 F(x). By the defini-
tion of FJ{},,, we obtain the conclusion. O

Inspired by [5], we give new definitions of conjugate and biconjugate for
set-valued map with respect to an element k° € intC.

Definition 4.8. Let F: X — V be a set-valued map and k° € intC. Then the
conjugate function of F, I}, ., : X — V, is defined by the following form

Fo g (%) 1= 1&u-Max U [z, 2*)k° — F(x)], C)
rzeX
for all z* € X. Moreover, for F,:‘D’l&u(x*) # (), we define F;J)l&u : X - Vby

Fif o) = M ([l = B (27,
TreX*
By the definition of F, ,,,, and using (ii), (iii) of Lemma 3.4, we obtain the
following properties.

Lemma 4.9. The functions FYo 10 have the following properties:
* hine(Fo e (#%)) = sup{(z, 27) + hine (= F (z))},
o M= F () = i (%) + B (F(2))).
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In a similar way as Theorem 4.7, we obtain the following weak duality the-
orem.

Theorem 4.10 (k%-weak duality). Let F: X — V be a set-valued map. Then
the biconjugate of F' has the following property:

Fii 10 (@) <& F(a).
4.2. Some properties of conjugate relations.

Theorem 4.11. The following statements hold.

(i) F} is strong I-C-lower semi-continuous,
(ii) Fr is strong u-C-lower semi-continuous,
(iii) Fj,, is strong (&u-C-lower semi-continuous.

Proof. We set
L':={T € L(X,Y)|F(T) <¢ V'}

and let {T,,} € L' with T}, — T (n — oc). Then we have that T,,z—F(z) <L V,
that is,

VcTyue—Fx)+C
and hence
-V -T,x+ F(z)—C.
Since F(z) is (—C)-closed valued map, we obtain

VcTlr—F)+C (Tz—F(x)<LV)

and hence T € L!. We can show the strong continuity properties of F,; and
F}%,,, in a similar way as the above. O

Example 1. Assumption of (—C)-closedness on F' is needed to show that
continuity of conjugate relation F}*. We set

X =11,2], Y =R?, C=R%, k0 = (1,1),

V=[0,1]x[0,1, F(z)=(-1,0) x (-32,3z), Thr= _%ko'

We can check that T, is linear. Moreover, we can also check that F' is not
(=C)-closed valued map. In this situation, we have that V C T,,x — F(z) + C
for all x € X with T,,x — Tz (n — o0) and

V¢ Te—F(z)+C

since Tx = Oy .
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Example 2. Assumption of (—C)-closedness on V is needed to show that
continuity of conjugate relation F);. We set

X=[2, Y=R, C=R}, k'=(1),

Ve{@yly<-1 o<0},  F)=0a)x 01, Tw=—k

We can check that T, is linear. Moreover, we can also check that V is not
(—=C)-closed. In this situation, we have that T,x — F(z) CV —C forall z € X
with T,z — Tz (n — oo0) and

Te—F(z)¢gV-C
since Tz = Oy.
4.3. Strong duality.

Theorem 4.12 (F}7 o ~type). Let F': X =V be a (—C)-bounded valued map
and k° € intC. We assume the following conditions:

(i) F is l&u-C-lower semi-continuous,
(i) F is l&u-C-convez,
(iii) there emists § € R such that F(x) € [sk0]%,
(iv) there ewists t € R such that Fo () € [ERO]".
Then we have hiye(FyS 1¢.,,) = hine (F).

Proof. By Theorem 4.10 and (ii) of Lemma 3.4, we obtain
(©) hine(Fd g0 () < hite(F(z)) for all z € X.
By the assumption and (vii) of Lemma 3.4, we have h¥ (F(x)) € R for all

inf
x € X. By the assumption k° € intC' and using property (¢), we have that for
all z € X
Ping(Fio 10 (7)) < hing(F(2)) < o00.
Moreover, since by the assumption, (vii) of Lemma 3.4 and Lemma 4.9, we

have
int(—Fho 1g0 (27)) = xlg({—<33a$*> + hine(F(2))} € R
and hence

int (Fr0 180 () = S‘elg {{@, %) + hiye (= Fpo 1g0(27)) } > —o00,
e X
that is, bl (F}5 ,g,,,) 1S proper.

By assumption (iii) and (iv) of Proposition 2.4, we have that F(z) <§
8k° <L, F(z). Using Proposition 3.1 and (ii) of Lemma 3.4 and 3.5, we have

(%) hine(F(2)) < 8 < hiy (F(2)) = —hipe (= F ().
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By assumption (iv) and (vi) of Proposition 2.4, we obtain F}; .. (z*) <L
tkO <4 F}%) i, (2%). Using Proposition 3.1 and (i) of Lemma 3.4 and 3.5, we
have

(%) = hing (= Filo 10 (27)) = hiup (Filo 1 (27)) < 1 < higg (Fo 10 (27)).-
We suppose contrary that there exists z € X such that hjl (F,,(2) <
hi e (F(z)). We set

Dom(hjiso F) :={z € X |hii;(F(z)) < o0},

inf

Epi(hiiso F) := {(z,t) € X x R|hi1:(F(z)) < t}.

n

Then we have by the assumption and Lemma 3.10, 3.11 that Epi(h{, o F) is
closed and convex. Moreover, we have
(2, hing © F]:(T,l&u(z)) ¢ Epi(hie o F).
From classical Hahn-Banach theorem there exists (2*,a) € X x R such that
(z*,a) # (0,0) and
(%) (z,2"Y4+a-hi;o F,jék,l&u(z) > sup{(z, z*) + ot |(x,t) € Epi(hit; o F) }.
It is clear that o < 0. By using scalarizing function A ; and following the same

line as Theorem 4.12 in [3], we obtain a < 0.
Dividing (*) by (—a) and using (x) and Lemma 4.9, we have

(z,27)

oo P ) > s {250 | ) € Bt o 1)}

—sup {1250 (o)

x € Dom(hiy; o F)}

Zam{¢“57+h&A—Fu»

(0%

Z*
_Lu *
_hinfoFkO,l&u<a>

x € Dom(h}‘foF)}

n

On the other hand, by the definition of F''; . () and (ii), (iii) of Lemma 3.4,
we have

<Z, _a> — hing © Fo 15 (_a) < <Z’ _a> + hinf( = Fo 180 <_a>)

Z*
u ok
< g © Fro g0 () ;

—Q

u

which is a contradiction. Therefore, we have hit:(F}5;¢.) = hine(F). O



ON SOME PROPERTIES OF CONJUGATE RELATION AND SUBDIFFERENTIALS 15

Remark 1. In [3], we have found that by (iii) of Proposition 3.1 it is difficult
to obtain Fjg ,-type duality theorem in this manner. Moreover, we have to
assume some conditions on F' and F}, , to obtain ll-type (Theorem 4.13 in [3])
and uu-type (Theorem 4.14 in [3]) strong duality theorems.

e F satisfies the condition F(x) — F(z) C C for all z € X. [ll-type]

o [ (x%) satisfies the condition F},  (2*) — F ,(2¥) € —C for all

ot e X+, [uu-type] , ’

4.4. Subdifferentials for set-valued map.

Definition 4.13. Let F': X — V be a set-valued map. Then the subdifferential
of F, 0'F(x),0"F(x), are defined by the following set:

O'F(x) :={T € LIX,Y) | Tv—Tzx+ F(x) <L F(v) Yove X},
OF(z) ={T € LIX,)Y) | Tv—Tx+ F(z) <¢ F(v) VYve X}

Proposition 4.14. Let F : X — V be a set-valued map and z € X. Then we
have the following relationship:

(a) Oy € 0'F(z) = F(z) € [-Min ( U [F(a:)],C’),
zeX
(b) Oy € 0"F(z) = F(z) € u-Min ( U [F(z)], C).
zeX
Proof. By the definition of 9! F(z), we have that

Oy € 0'F(2) <= 0z — 02+ F(2) <L F(z) (Vr€ X)

— F(2) <L F(z) (VzeX) = F(z) €l—Min ( U [F(x)],C’)
reX
and hence conclusion (a) holds. In a similar way, we obtain ccfnclusion (b). O
Theorem 4.15. Let F': X — V be a set-valued map and z € X. Then the
following statement is true:
T€dF(z) = F(2)+ F(T) <L Tz
Proof. By the definition of 9'F(z), we have that
TcdF(z) < Tx—-Tz+F(2) <L F(z) (VzeX)
— Fa)cTzx-Tz+F(z)+C (VxeX)
= Tz+F(z) CTe+F(z)+C (VzxeX)
= Tze€Tz+F(x)—F(x)CTr—Fx)+ F(z)+C (Vz e X)
> F(2)+ Tz —F(z) <L Tz (VzeX).

By the definition of F}*(T'), we obtain F(z) + F(T) <, T=. O
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Theorem 4.16. Let F : X — V be a set-valued map and z € X. Then the
following statement is true:

F(z)+ F,(T) <¢ Tz = T € 0"F(2).
Proof. Let F(z) + Fi(T) < Tz. By the definition of F,;(T), we have
< F(2)+ Tz - F(x) <t Tz (Vz e X)
<— F(z)+Tz—F(x)CcTz—-C (VzxeX)
= Tex—-Tz+F(z)—F(z) c-C (VzreX)
=T -T2+ F(2) CTe—Tz+F(2)+ F(z) - F(z) CF(z)-C (Vze X)
<= Te—-Tz+ F(z2) <¢ F(z) (Vx € X),
that is, T € 9“F(z). O

5. CONCLUSIONS

In this paper, first we gave new definitions of conjugate of set-valued map in
the framework of set optimization problem. Then we presented weak duality
theorems with respect to the set relations §lc‘%“. Moreover, we presented strong
duality theorems which depend on the direction k° € intC and nonlinear scalar-
ization technique. We also gave some continuity properties of conjugate relation
for set-valued map. Then we have found that the concept of C-closedness plays
an important role to derive some kind of continuity properties of set-valued map
F' in set optimization problem. Lastly, we gave new definitions of subdiffer-
entials for set-valued map and investigate its properties. We also gave some
relationships between the subdifferentials for set-valued map and the Fenchel’s
type inequalities for set-valued map.

By Proposition 4.14, the author think that Definition 4.13 is one of the nat-
ural extensions of subdifferential for (extended) real-valued function. There are
some previous researches for the differentials for set-valued map (for instance,
[6, 15, 20]), however, the investigation of subdifferential for set-valued map has
only just begun. The investigation of relationships between the differentials for
set-valued map and the subdifferentials for set-valued map will be one of the
most important subject of set optimization problem.
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Lemma 5.1. For C CY a closed convex cone and A, B,V €V, the following
statements hold:

(i) C+C=0C;
(ii) C +intC = intC;

(iii) clA+clB C cl(A + B);

(iv) (V+C)+C=cl(V+0O).

Appendix A: Proof of Lemma 3.3

Proof. We define
AL(V) = {t e R|tk" € int(V + C)},
ANV):={teRti’ eV +C},
A (V):={teRtk® ec(V+0O)}.
Then we have obviously that AL (V) € AY(V)) € A’ (V) and hence
inf AL (V) <inf A(V)(= bl (V) <inf AL (V).

(i) We assume h! (V) <t and let ¢t € R be fixed. Then by the definitions of
hfnf and A! being of epigraphical type (that is, t € A' and # > ¢ implies £ € A,
see [1]), we have

1
(t+)k°eV+C
n

for all n € N. Taking the limit when n — oo, we obtain tk° € cl(V + C).

Conversely, by the definitions of hfnf, we show

inf A" (V) = inf AY(V) = inf A" (V).

We assume contrary that inf A, (V) < inf AL (V). Then there exists t1,t> € R
such that inf AL (V) < t1 < to < inf AL(V). By inf AL (V) < t1 [t1k° €
cl(V + C)] and using (iv) of Lemma 5.1, we have

(*) k" +C Cel(V+0)+C=cl(V+0).
On the other hand, we have
(x%)  tak? € tak? + C = t1k° + C + (ta — t1)k° C t1k° +intC = int(t,£° + ).
By (%), we have the following inclusion
(¢ % %) int(t,k° + C) C int(cl(V + C)) = int(V + O).

By (x*) and (x * ), we obtain tk® € int(V + C), which contradicts ty <
inf AL (V).
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(ii) Let V1, V2 € V be such that V3 §lc Vo (Vo € V1 + C). Then we have
Vo+CcCcWvi+C+C=V,+C.
If A

! +(Va) = oo, we have that condition (ii) clearly holds. Taking h! ;(V2) € R,
we obtain
it (V2)k® C cl(Va + C) C cl(Vh + O).

Using (i) of Lemma 3.3, we have h! (V1) < Al ;(Va).

(iii) see [31]. (iv) is from the definition of equivalence class and the mono-
tonicity of hfnf.

(v) We prove sub-additivity. For any Vi, V2 € V by the definition of h! ; we
have

hLe(VDKY Ccd(Vi +C) and Rl (Va)k° C cl(Va + O).

If bl (V1) = oo or bl ;(Va) = oo, we have that condition (v) clearly holds. By
adding the above inclusions and using (iii) of Lemma 5.1, we obtain

{Mbue (V1) + M (Vo) 0 C (Vi + C) + cl(Va + C) C cl(Vi + Vo + O).

Using (i) of Lemma 3.3, we obtain the sub-additivity of h ;. The positively
homogeneity of k! ; is easy.

(vi) Firstly, we show
V eV:C—proper <= hl (V) > —oc0
FV+C =Y for VeV, then we have tk® C V + C for all t € R, which is
equivalent to h! (V) = —oc. Conversely, let tk° C V + C for all t € R. Then
we have
th°"+CcV+C+C=V+C.
For kY € intC, it is known that

Y’ +0)=v
teR
and hence V 4+ C =Y.
Moreover, there exist s € R such that sk® € V+C, that is, hfmc(V) < s < 00.

Indeed, suppose that for all £ € R such that tk® € V + C. Taking t = —n, we
have —nk® € y + C for all y € V and n € N. Hence, we have

welic
n

Taking the limit when n — oo, we obtain k° € —C, which is a contradiction.
(vii) Let hi (V) < t. Then there exists ¢ € R such that hl (V) <% < t. By

inf i
using (i), we have

th® =t + (t - D" CV+C+ (t — DK’ C V +intC.
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Conversely, let tk° € V 4 intC. For k® € intC, it is known that

intC = | J(ek® + intC).
e>0

Therefore, we have

th® € V+intC = | J(V +ek® + intC + C)

e>0
and {V +¢ek® +intC'+ C}.~o is an open cover of {tk’}. Since {tk°} is compact,
we can find 1,9, -, &, > 0 such that

th® € [ J(V + ek’ +intC + C) =V + gk + intC C V + £ok” + C,
i=1
where €g := min{g;|[i = 1,2---m} > 0. Then we have (t — &9)k" € cl(V + O)
and therefore hl (V) <t —eg < t.
(viii) In a similar way as (ii) by using (vii) instead of (i), remarking intC +
C' = intC, we obtain the conclusion. O

Appendix B: Proof of Lemma 3.4

Proof. (i) We define
A (V):={teR|V Ctk®—C}.
We assume hi;(V) <t and let ¢ € R be fixed. Then by the definitions of A%,

inf

and A* being of epigraphical type, we have

1
v — (t—i—)kOE—C
n

for all v € V and n € N. Taking the limit when n — 0o, we obtain
v—tk® € —clC = —C

for all v € V, that is, V C tk? — C. The converse is clear from the definition of
h¥

inf*

(ii) Let V4,V2 € V be such that Vi <¢ Vo (Vi C Vo — C). If Al (Va) = oo,

we have that condition (ii) clearly holds. Taking hl* (V2) € R, we obtain

inf

Vo C R (Va)k® — C

inf

and hence
Vo—C C h*

inf

(Vo)k® —C — C = ht

inf

(Vo)k® — C.
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Using the inclusion Vi C Vo — C, we have
i CVg—CCh?nf(Vg)k;O—C
that is, it (V1) < A (Va).

inf
(iil) see [31]. (iv) and (v) are similar as Lemma 3.3.
(vi) Let hi (V) < t. Then there exists £ € R such that h

inf inf
using (i), we have

V itk —C =tk — (t —H)E* — C C tk° — intC.

(vii) Firstly, we show h¥.(V) > —oco for V € V. Indeed, let V C tk" — C
for all t € R. Taking t = —n, we have y € —nk® — C for all y € V and n € N.
Hence, we have

(V) <t<t By

Yiwe-c
n
Taking the limit when n — oo, we obtain k° € —C, which is a contradiction.
Since V € V is (—C)-bounded and k° € intC, for the neighborhood of zero
U=k —intC
there exists s > 0 such that V C s(k° — intC') — C and hence
V C sk? — (intC + C) C sk¥ — C.

that is, hl* (V) < s < 0.

inf

(viii) Let V C tk° — intC. For k° € intC, it is known that

intC = | J ((ek° +intC) + C).
e>0

Therefore, we have

V C tk® —intC = tk° — U (ek® +intC + C) = U ({(t =)k —intC} — C)

e>0 e>0
and {(t — €)k? — intC' — C'}.~¢ is an open cover of V. Since V € V is (—C)-
compact, we can find €1,¢€9, - , &, > 0 such that

V C [ J((t =)k’ —intC — C) = (t — go)k° — intC C (t — £0)k® — C
i=1
where ¢ := min{g;|i = 1,2---m} > 0. Then we have V C (t — g9)k® — C and
therefore hl' (V) <t —gp < t.
(ix) In a similar way as (ii) by using (vi) and (viii) instead of (i), remarking
intC' + C = intC', we obtain the conclusion. O
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