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with respect to the supremum and infimum in the sense of vector lattice (see
[32, 33]). The fourth one gravitates around Wolfe and Mond-Weir duality.

This paper is a continuous research of [3]. We introduce a new approach
to obtain duality theory in set optimization problem. We adopt the second
type approaches to derive weak duality theorems in the framework of set opti-
mization problem. To derive strong duality theorems, we employ the first type
approach which is a nonlinear scalarizing technique for sets. We also investigate
some properties of conjugate relation and subdifferentials in set optimization
problem.

The organization of this paper is as follows. In section 2, we give some
preliminaries of vector optimization problem and set optimization problem.
In section 3, we introduce some types of nonlinear scalarizing technique for
sets [1, 3] which are generalization of Gerstewitz’s scalarizing function for the
vector-valued case [9, 11, 12]. Section 4 is the main results. First, we give
new definitions of set-valued conjugate relation based on comparison of sets
(l&u type [21]). The new definitions, which are inspired by Chapter 7 of [5],
are natural extension of vector-valued conjugate function. Then we give some
types of weak duality theorems with respect to l&u type set relation. We also
give some continuity properties of conjugate relation for set-valued map. Next,
by using nonlinear scalarizing technique for set, we present a strong duality
theorem with respect to l&u type set relation. Lastly, we give some definitions
of subdifferentials for set-valued map and investigate its properties.

2. Mathematical preliminaries

Let Rn be a Euclidean space and Rn
+ := {x ∈ Rn | x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0}

a nonnegative orthant of Rn. Throughout of this paper, let X be a Hilbert
space, Y a topological vector space and 0Y the origin of Y . For a set A ⊂ Y ,
intA and clA denote the topological interior and the topological closure of A,
respectively. We denote the set of linear continuous mappings from X to Y by
L(X,Y ). We denote V by the family of nonempty subsets of Y . The sum of
two sets V1, V2 ∈ V and the product of α ∈ R and V ∈ V are defined by

V1 + V2 := {v1 + v2 | v1 ∈ V1, v2 ∈ V2} αV := {αv | v ∈ V }.
In this paper, we assume that C ⊂ Y is a closed convex cone, that is, clC = C,
C + C ⊂ C and t · C ⊂ C for all t ∈ [0,∞).

2.1. Preliminaries of vector optimization. A cone C is called pointed if
C ∩ (−C) = {0Y } and solid if intC ̸= ∅.

Definition 2.1. For a, b ∈ Y and a solid convex cone C ⊂ Y , we define

a ≤C b by b− a ∈ C.
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Proposition 2.2. For x ∈ Y and y ∈ Y , the following statements hold:

(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Y ,
(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is anti-

symmetric and hence a partial order.

We say that a point a ∈ A ⊂ Y is a maximal [resp. weak maximal] point of
A if there is no â ∈ A \ {a} such that a ≤C â [resp. a ≤intC â]. The above
definition is equivalent to

A ∩ (a+ C) = {a} [resp. A ∩ (a+ intC) = ∅].

We denote by Max(A;C)[resp. wMax(A; intC)] the set of maximal [resp. weak
maximal] points of A with respect to C [resp. intC], respectively. We can easily
see that

Max(A;C) ⊂ wMax(A; intC) ⊂ A.

2.2. Preliminaries of set optimization. We consider several types of binary
relationships on V by using a solid convex cone C ⊂ Y .

Definition 2.3 ([21, 30]). For A, B ∈ V and a solid convex cone C ⊂ Y , we
define

(lower type) A ≤l
C B by B ⊂ A+ C,

(upper type) A ≤u
C B by A ⊂ B − C,

(lower and upper type) A ≤l&u
C B by B ⊂ A+ C and A ⊂ B − C.

Proposition 2.4 (Further investigation of [1, 31]). For A, B, D ∈ V, a, b ∈ Y
and α ≥ 0, the following statements hold.

(i) A ≤l
C B implies A+D ≤l

C B+D and A ≤u
C B implies A+D ≤u

C B+D.
(ii) A ≤l

C B implies αA ≤l
C αB and A ≤u

C B implies αA ≤u
C αB.

(iii) ≤l
C and ≤u

C are reflexive and transitive.
(iv) A ≤l&u

C B implies A ≤l
C B and A ≤l&u

C B implies A ≤u
C B.

(v) A ≤l
C B and A ≤u

C B are not comparable, that is, A ≤l
C B does not

imply A ≤u
C B and A ≤u

C B does not imply A ≤l
C B.

(vi) A ≤u
C b implies A ≤l

C b and a ≤l
C B implies a ≤u

C B.

Definition 2.5 ([34]). It is said that A ∈ V is

(i) C-closed
[
(−C)-closed

]
if A+ C [A− C] is a closed set,

(ii) C-bounded
[
(−C)-bounded

]
if for each neighborhood U of zero in Z

there is some positive number t > 0 such that

A ⊂ tU + C [A ⊂ tU − C],
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(iii) C-compact
[
(−C)-compact

]
if any cover of A the form {Uα + C| Uα

are open} [{Uα − C| Uα are open}] admits a finite subcover.

Every C-compact set is C-closed and C-bounded. We denote cl(V)C by the
family of C-closed subsets of Y and cl(V)−C the family of (−C)-closed subsets
of Y , respectively.

Definition 2.6 ([18]). It is said that A ∈ V is C-proper
[
(−C)-proper

]
if

A+ C ̸= Y [A− C ̸= Y ].

We denote VC by the family of C-proper subsets of Y and V−C the family of
(−C)-proper subsets of Y , respectively.

Introducing the equivalence relations

A ∼l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A ∼u B ⇐⇒ A ≤u
C B and B ≤u

C A,

A ∼l&u B ⇐⇒ A ≤l&u
C B and B ≤l&u

C A,

we can generate a partial ordering on the set of equivalence classes which are
denoted by [·]l, [·]u and [·]l&u, respectively. We can easily see that

A ∈ [B]l ⇐⇒ A+ C = B + C,

A ∈ [B]u ⇐⇒ A− C = B − C,

A ∈ [B]l&u ⇐⇒ A+ C = B + C and A− C = B − C.

Definition 2.7 (l[u, l&u]-minimal and l[u, l&u]-maximal element). Let S ⊂ V .
We say that Ā ∈ S is a l[u, l&u]-minimal element if for any A ∈ S,

A ≤l[u,l&u]
C Ā implies Ā ≤l[u,l&u]

C A.

Moreover, we say that Ā ∈ S is a l[u, l&u]-maximal element if for any A ∈ S,

Ā ≤l[u,l&u]
C A implies A ≤l[u,l&u]

C Ā.

We denote the family of l[u, l&u]-minimal elements of S by l[u, l&u]-Min(S, C)
and the family of l[u, l&u]-maximal elements of S by l[u, l&u]-Max(S, C).



ON SOME PROPERTIES OF CONJUGATE RELATION AND SUBDIFFERENTIALS 5

3. Nonlinear scalarization

In this subsection, we assume that k0 ∈ C \ (−C). In 1980s, Gerstewitz [9]
introduced a nonlinear scalarizing function in vector optimization problem. The
nonlinear scalarizing function is known as the Gerstewitz’s function. Agreeing
inf ∅ = ∞, we define φC,k0 : Y → (−∞,∞],

φC,k0(y) = inf{t ∈ R
∣∣y ≤C tk0 } = inf{t ∈ R

∣∣y ∈ tk0 − C }.

The above scalarization method, which is also found in a similar form [36],
contains the linear scalarization as a special case. After in [10, 11], they de-
rived the essential properties of the Gerstewitz’s function in vector optimization
problem, for instance, monotonicity properties, sublinear properties. Also, the
scalarizing function φC,k0 has a dual form. Agreeing sup ∅ = −∞, we define
ψC,k0 : Y → [−∞,∞)

ψC,k0(y) = sup{t ∈ R
∣∣tk0 ≤C y } = sup{t ∈ R

∣∣y ∈ tk0 + C }(
φC,k0(y) = −ψC,k0(−y)

)
.

These functions have wide applications in vector optimization (see also Luc [34],
Göpfert-Riahi-Tammer-Zălinescu [12]).

The investigation of scalarizing functions for sets begun at around 2000. In
the 2000s decade there were four important papers (see [7, 8, 16, 18]). In the last
decade, many authors have been investigated sublinear scalarizing technique for
set optimization problem ([1, 2, 3, 13, 14, 17, 23, 27, 28, 29, 35, 37, 42] and
their references therein).

In this section, we investigate detailed properties of the following nonlinear
scalarizing functions for set, which are natural extension of φC,k0 and ψC,k0 .

Agreeing inf ∅ = ∞ and sup ∅ = −∞, we define hlinf , h
u
inf , h

l&u
inf : V → [−∞,∞]

hlinf(V ) = inf{t ∈ R
∣∣V ≤l

C {tk0}} = inf{t ∈ R
∣∣tk0 ∈ V + C },

huinf(V ) = inf{t ∈ R
∣∣V ≤u

C {tk0}} = inf{t ∈ R
∣∣V ⊂ tk0 − C },

hl&u
inf (V ) = inf{t ∈ R

∣∣V ≤l&u
C {tk0}}

= inf{t ∈ R
∣∣tk0 ∈ V + C and V ⊂ tk0 − C },

and hlsup, h
u
sup, h

l&u
sup : V → [−∞,∞]

hlsup(V ) = sup{t ∈ R
∣∣{tk0} ≤l

C V } = sup{t ∈ R
∣∣V ⊂ tk0 + C },

husup(V ) = sup{t ∈ R
∣∣{tk0} ≤u

C V } = sup{t ∈ R
∣∣tk0 ∈ V − C },
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hl&u
sup (V ) = sup{t ∈ R

∣∣{tk0} ≤l&u
C V }

= sup{t ∈ R
∣∣V ⊂ tk0 + C and tk0 ∈ V − C }.

The functions hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup play the role of utility functions.

By the definitions of the above scalarizing functions for sets, we obtain the
following relationships.

Proposition 3.1 (see also [1, 3]). The following statements hold;

(i) hlsup(V ) = −huinf(−V );

(ii) husup(V ) = −hlinf(−V );

(iii) hlinf(V ) ≤ huinf(V ) = hl&u
inf (V );

(iv) hl&u
sup (V ) = hlsup(V ) ≤ husup(V );

(v) hl&u
sup (V ) = −hl&u

inf (−V ).

Proof. (iii) (vi) Using the following inclusions

{V ∈ V
∣∣V ⊂ tk0 − C } ⊂ {V ∈ V

∣∣tk0 ∈ V + C } and

{V ∈ V
∣∣V ⊂ tk0 + C } ⊂ {V ∈ V

∣∣tk0 ∈ V − C },
we obtain huinf(V ) = hl&u

inf (V ) and hl&u
sup (V ) = hlsup(V ). The inequality parts

are from [3].

(v) Combining conclusion (i), (iii) and (iv), we obtain the conclusion. □
Definition 3.2. We say that the function f : V → [−∞,∞] is ≤l

C-increasing
if V1 ≤l

C V2 implies f(V1) ≤ f(V2). The definitions of ≤u
C-increasing and

≤l&u
C -increasing are similar to the above one.

3.1. Infimum type. In this subsection, we give several properties of infimum
type scalarizing functions for sets, which is the revised version of [1]. The
reader can check that Lemma 3.3 and 3.4 are almost the same as Corollary 3.3
and 3.5 in [1], respectively. However, the above Corollaries in [1] have some
mistakes:

• (ii) of Corollary 3.3 in [1] [hlinf(V ) ≤ t ⇐⇒ tk0 ∈ V + C] is wrong,
• (vii) and (viii) of Corollary 3.5 in [1] [if k0 ∈ intC then (vii) V ⊂
tk0 − intC ⇐⇒ huinf(V ) < t, (viii) huinf is strictly ≤u

intC -increasing]
are wrong.

Lemma 3.3 (l-infimum type [1, 3]). Let k0 ∈ intC. The function hlinf : VC →
(−∞,∞] has the following properties:

(i) hlinf(V ) ≤ t ⇐⇒ tk0 ∈ cl(V + C);
(ii) hlinf is ≤l

C-increasing;
(iii) hlinf(V + λk0) = hlinf(V ) + λ for every λ ∈ R;
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(iv) V̂ ∈ [V ]l =⇒ hlinf(V̂ ) = hlinf(V );
(v) hlinf is sublinear (that is, for V1, V2 ∈ V and α ≥ 0, hlinf(V1 + V2) ≤

hlinf(V1) + hlinf(V2) and h
l
inf(αV1) = αhlinf(V1));

(vi) hlinf achieves a real value;
(vii) hlinf(V ) < t ⇐⇒ tk0 ∈ V + intC;
(viii) hlinf is strictly ≤l

intC -increasing.

Lemma 3.4 (u and l&u-infimum type [1, 3]). Let k0 ∈ intC. The function
huinf(= hl&u

inf ) : V → (−∞,∞] has the following properties:

(i) huinf(V ) ≤ t ⇐⇒ V ⊂ tk0 − C;
(ii) huinf is ≤u

C-increasing [huinf is ≤l&u
C -increasing];

(iii) huinf(V + λk0) = huinf(V ) + λ for every λ ∈ R;
(iv) V̂ ∈ [V ]u =⇒ huinf(V̂ ) = huinf(V ) [V̂ ∈ [V ]l&u =⇒ huinf(V̂ ) = huinf(V )];
(v) huinf is sublinear;
(vi) huinf(V ) < t =⇒ V ⊂ tk0 − intC.

Moreover, if k0 ∈ intC and V is (−C)-bounded then huinf has the following
property:

(vii) huinf achieves a real value.

Furthermore, if k0 ∈ intC and V is (−C)-compact then huinf has the following
properties:

(viii) V ⊂ tk0 − intC =⇒ huinf(V ) < t;
(ix) huinf is strictly ≤u

intC -increasing [huinf is strictly ≤l&u
intC -increasing].

3.2. Supremum type. Using Proposition 3.1, we obtain the following Lem-
mas in a similar way as Lemma 3.3 and Lemma 3.4.

Lemma 3.5 (l-supremum type). Let k0 ∈ intC. The function hlsup : V →
[−∞,∞) has the following properties:

(i) hlsup(V ) ≥ t ⇐⇒ V ⊂ tk0 + C;

(ii) hlsup is ≤l
C-increasing;

(iii) hlsup(V + λk0) = hlsup(V ) + λ for every λ ∈ R;
(iv) V̂ ∈ [V ]l =⇒ hlsup(V̂ ) = hlsup(V );

(v) hlsup is super-additive and positively homogeneous (that is, for V1, V2 ∈
V and α ≥ 0, hlsup(V1 + V2) ≥ hlsup(V1) + hlsup(V2) and hlsup(αV1) =

αhlsup(V1));

(vi) hlsup(V ) > t =⇒ V ⊂ tk0 + intC.

Moreover, if k0 ∈ intC and V is C-bounded then hlsup has the following property:

(vii) hlsup achieves a real value.
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Furthermore, if k0 ∈ intC and V is C-compact then hlsup has the following
properties:

(viii) V ⊂ tk0 + intC =⇒ hlsup(V ) > t;

(ix) hlsup is strictly ≤l
intC -increasing.

Lemma 3.6 (u-supremum type). Let k0 ∈ intC. The function husup : V−C →
[−∞,∞) has the following properties:

(i) husup(V ) ≥ t ⇐⇒ tk0 ∈ cl(V − C);
(ii) husup is ≤u

C-increasing;

(iii) husup(V + λk0) = husup(V ) + λ for every λ ∈ R;
(iv) V̂ ∈ [V ]u =⇒ husup(V̂ ) = husup(V );
(v) husup is super-additive and positively homogeneous;
(vi) husup achieves a real value;

(vii) husup(V ) > t ⇐⇒ tk0 ∈ V − intC;
(viii) husup is strictly ≤u

intC -increasing.

3.3. Inherited properties of continuity and convexity for set-valued
map.

Definition 3.7 (l&u-C-convexity). Let K be a convex set in a real vector
space X. A set-valued map F : X → V is said to be l&u-C-convex on K if for
each x1, x2 ∈ K and λ ∈ [0, 1], we have

F (λx1 + (1− λ)x2) ≤l&u
C λF (x1) + (1− λ)F (x2).

Definition 3.8 (C-lower semi-continuity). Let X be a topological space. A
set-valued map F : X → V is said to be l[u, l&u]-C-lower semi-continuous at
X if the set

{x ∈ X|F (x) ≤l[u,l&u]
C V }

is closed for all V ∈ V .

Definition 3.9 (strong C-lower semi-continuity). LetX be a topological space.
A set-valued map F : X → V is said to be

(i) strong l-C-lower semi-continuous at X if the set

{x ∈ X|F (x) ≤l
C V }

is closed for all F (x) ∈ cl(V)−C and V ∈ V ,
(ii) strong u-C-lower semi-continuous at X if the set

{x ∈ X|F (x) ≤u
C V }

is closed for all V ∈ cl(V)−C ,
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(iii) strong l&u-C-lower semi-continuous at X if the set

{x ∈ X|F (x) ≤l&u
C V }

is closed for all F (x) ∈ cl(V)−C and V ∈ cl(V)−C .

By using (ii) of Lemma 3.4, we obtain the following properties.

Lemma 3.10. Let K be a convex set in a real vector space X and k0 ∈ intC.
If a set-valued map F : X → V is l&u-C-convex, then hl&u

inf (F (·)) is convex on
K.

Lemma 3.11. Let X be a topological space and k0 ∈ intC. If a set-valued
map F : X → V is l&u-C-lower semi-continuous, then hl&u

inf (F (·)) is lower
semi-continuous.

4. Main results

Let H be a Hilbert space and let f : H → (−∞,∞] be a proper function.
Then we define the conjugate and biconjugate function of f as follows:

f∗(x∗) := sup
x∈H

{⟨x, x∗⟩ − f(x)},

f∗∗(x) := sup
x∗∈H

{⟨x, x∗⟩ − f∗(x∗)}.

The following result is the one of the most fundamental theorem in duality
theory.

Theorem 4.1 ([38]). Let H be a Hilbert space and let f : H → (−∞,∞] be a
proper convex lower semicontinuous function. Then f∗∗ = f .

In this section, let C be a solid closed convex cone. We consider the conjugate
and biconjugate of set-valued map F : X → V and investigate its properties.
Moreover, based on the proof of Theorem 4.1 in [38], we extend Theorem 4.1 to
set-valued map by using classical Hahn-Banach theorem and nonlinear scalar-
izing technique mentioned in Section 3.

4.1. Conjugate relations and weak duality. First, we look back on a the-
ory of conjugate duality in vector optimization. We denote the set of m × n
matrix by Rm×n.

Definition 4.2 (Tanino-Sawaragi [39, 40, 41]). Let f : Rn → Rm be a vector-
valued function. Then the conjugate function of f , f∗ : Rm×n → V , is defined
by the following form

f∗(A) := Max

( ⋃
x∈Rn

{Ax− f(x)};Rm
+

)
,



10 YOUSUKE ARAYA

By reiterating the operation f → f∗ on f∗, we define the biconjugate of f ,
f∗∗ : Rn → V , by the following form

f∗∗(x) := Max

( ⋃
A∈Rm×n

{Ax− f∗(A)};Rm
+

)
.

However, generally speaking, f∗(A) is a set-valued mapping. To overcome
the difficulty, Kawasaki [24, 25] introduced set relation on V. Based on his
results, we presented new definitions of the biconjugate of f .

Definition 4.3 ([4]). For f∗(A) ̸= ∅, we define f∗∗l , f∗∗u : Rn → V by

f∗∗l (x) := l-Max

( ⋃
A∈Rm×n

[Ax− f∗(A)],Rm
+

)
,

f∗∗u (x) := u-Max

( ⋃
A∈Rm×n

[Ax− f∗(A)],Rm
+

)
.

In a similar way as the above, we also gave new definitions of set-valued
conjugate maps in infinite dimensional space as a natural extension of [4, 39,
40, 41].

Definition 4.4 (Araya [3]). Let F : X → V be a set-valued map. Then the
conjugate function of F , F ∗

l , F
∗
u : L(X,Y ) → V , are defined by the following

form

F ∗
l (T ) := l-Max

( ⋃
x∈X

[Tx− F (x)], C

)
,

F ∗
u (T ) := u-Max

( ⋃
x∈X

[Tx− F (x)], C

)
.

Definition 4.5 (Araya [3]). For F ∗
l (T ) ̸= ∅ and F ∗

u (T ) ̸= ∅, we define
F ∗∗
ll , F

∗∗
lu , F

∗∗
ul , F

∗∗
uu : X → V by

F ∗∗
ll (x) := l-Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
l (T )], C

)
,

F ∗∗
lu (x) := l-Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
u (T )], C

)
,

F ∗∗
ul (x) := u-Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
l (T )], C

)
,

F ∗∗
uu(x) := u-Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
u (T )], C

)
.

In a similar way as the above, we give new definitions of set-valued conjugate
maps with respect to l&u set relation.
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Definition 4.6. Let F : X → V be a set-valued map. Then the conjugate
function of F , F ∗

l&u : L(X,Y ) → V , is defined by the following form

F ∗
l&u(T ) := l&u-Max

( ⋃
x∈X

[Tx− F (x)], C

)
.

Moreove, for F ∗
l&u(T ) ̸= ∅, we define F ∗∗

l&u : X → V by

F ∗∗
l&u(x) := l&u-Max

( ⋃
T∈L(X,Y )

[Tx− F ∗
l&u(T )], C

)
.

In a similar way as [3], we obtain the following weak duality theorem.

Theorem 4.7 (Weak duality). Let F : X → V be a set-valued map. Then the
biconjugate of F has the following property:

F ∗∗
l&u(x) ≤l&u

C F (x).

Proof. By the definition of F ∗
l&u, we have

Tx− F (x) ≤l
C F ∗

l&u(T ) and Tx− F (x) ≤u
C F ∗

l&u(T ) ∀x ∈ X, ∀T ∈ L(X,Y ),

(F ∗
l&u(T ) ⊂ Tx−F (x)+C and Tx−F (x) ⊂ F ∗

l&u(T )−C). Then we obtain
the following inclusions:

Tx− F ∗
l&u(T ) ⊂ F (x)− C and F (x) ⊂ Tx− F ∗

l&u(T ) + C,

that is, Tx− F ∗
l&u(T ) ≤u

C F (x) and Tx− F ∗
l&u(T ) ≤l

C F (x). By the defini-
tion of F ∗∗

l&u, we obtain the conclusion. □
Inspired by [5], we give new definitions of conjugate and biconjugate for

set-valued map with respect to an element k0 ∈ intC.

Definition 4.8. Let F : X → V be a set-valued map and k0 ∈ intC. Then the
conjugate function of F , F ∗

k0,l&u : X → V , is defined by the following form

F ∗
k0,l&u(x

∗) := l&u-Max

( ⋃
x∈X

[⟨x, x∗⟩k0 − F (x)], C

)
for all x∗ ∈ X. Moreover, for F ∗

k0,l&u(x
∗) ̸= ∅, we define F ∗∗

k0,l&u : X → V by

F ∗∗
k0,l&u(x) := l&u-Max

( ⋃
x∗∈X∗

[⟨x, x∗⟩k0 − F ∗
k0,l&u(x

∗)], C

)
.

By the definition of F ∗
k0,l&u and using (ii), (iii) of Lemma 3.4, we obtain the

following properties.

Lemma 4.9. The functions F ∗
k0,l&u have the following properties:

• huinf(F
∗
k0,l&u(x

∗)) = sup
x∈X

{⟨x, x∗⟩+ huinf(−F (x))},

• huinf(−F ∗
k0,l&u(x

∗)) = inf
x∈X

{−⟨x, x∗⟩+ huinf(F (x))}.
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In a similar way as Theorem 4.7, we obtain the following weak duality the-
orem.

Theorem 4.10 (k0-weak duality). Let F : X → V be a set-valued map. Then
the biconjugate of F has the following property:

F ∗∗
k0,l&u(x) ≤l&u

C F (x).

4.2. Some properties of conjugate relations.

Theorem 4.11. The following statements hold.

(i) F ∗
l is strong l-C-lower semi-continuous,

(ii) F ∗
u is strong u-C-lower semi-continuous,

(iii) F ∗
l&u is strong l&u-C-lower semi-continuous.

Proof. We set

Ll := {T ∈ L(X,Y )
∣∣F ∗

l (T ) ≤l
C V }

and let {Tn} ⊂ Ll with Tn → T̂ (n→ ∞). Then we have that Tnx−F (x) ≤l
C V ,

that is,

V ⊂ Tnx− F (x) + C

and hence

−V ⊂ −Tnx+ F (x)− C.

Since F (x) is (−C)-closed valued map, we obtain

V ⊂ T̂ x− F (x) + C (T̂ x− F (x) ≤l
C V )

and hence T̂ ∈ Ll. We can show the strong continuity properties of F ∗
u and

F ∗
l&u in a similar way as the above. □

Example 1. Assumption of (−C)-closedness on F is needed to show that
continuity of conjugate relation F ∗

l . We set

X = [1, 2], Y = R2, C = R2
+, k0 = (1, 1),

V = [0, 1]× [0, 1], F (x) = (−1, 0)× (−3x, 3x), Tnx = − x

2n
k0.

We can check that Tn is linear. Moreover, we can also check that F is not
(−C)-closed valued map. In this situation, we have that V ⊂ Tnx− F (x) + C

for all x ∈ X with Tnx→ T̂ x (n→ ∞) and

V ̸⊂ T̂ x− F (x) + C

since T̂ x = 0Y .



ON SOME PROPERTIES OF CONJUGATE RELATION AND SUBDIFFERENTIALS 13

Example 2. Assumption of (−C)-closedness on V is needed to show that
continuity of conjugate relation F ∗

u . We set

X = [1, 2], Y = R2, C = R2
+, k0 = (1, 1),

V = {(x, y) |xy ≤ −1 x < 0}, F (x) = [0, x]× [0, x], Tnx = − x

2n
k0.

We can check that Tn is linear. Moreover, we can also check that V is not
(−C)-closed. In this situation, we have that Tnx−F (x) ⊂ V −C for all x ∈ X

with Tnx→ T̃ x (n→ ∞) and

T̃ x− F (x) ̸⊂ V − C

since T̃ x = 0Y .

4.3. Strong duality.

Theorem 4.12 (F ∗∗
k0,l&u-type). Let F : X → V be a (−C)-bounded valued map

and k0 ∈ intC. We assume the following conditions:

(i) F is l&u-C-lower semi-continuous,
(ii) F is l&u-C-convex,
(iii) there exists ŝ ∈ R such that F (x) ∈ [ŝk0]l&u,
(iv) there exists t̂ ∈ R such that F ∗

k0,l&u(x) ∈ [t̂k0]u.

Then we have huinf(F
∗∗
k0,l&u) = huinf(F ).

Proof. By Theorem 4.10 and (ii) of Lemma 3.4, we obtain

(⋄) huinf(F ∗∗
k0,l&u(x)) ≤ huinf(F (x)) for all x ∈ X.

By the assumption and (vii) of Lemma 3.4, we have huinf(F (x)) ∈ R for all
x ∈ X. By the assumption k0 ∈ intC and using property (⋄), we have that for
all x ∈ X

huinf(F
∗∗
k0,l&u(x)) ≤ huinf(F (x)) <∞.

Moreover, since by the assumption, (vii) of Lemma 3.4 and Lemma 4.9, we
have

huinf(−F ∗
k0,l&u(x

∗)) = inf
x∈X

{−⟨x, x∗⟩+ huinf(F (x))} ∈ R

and hence

huinf(F
∗∗
k0,l&u(x)) = sup

x∗∈X∗
{⟨x, x∗⟩+ huinf(−F ∗

k0,l&u(x
∗))} > −∞,

that is, huinf(F
∗∗
k0,l&u) is proper.

By assumption (iii) and (iv) of Proposition 2.4, we have that F (x) ≤u
C

ŝk0 ≤l
C F (x). Using Proposition 3.1 and (ii) of Lemma 3.4 and 3.5, we have

(⋆) huinf(F (x)) ≤ ŝ ≤ hlsup(F (x)) = −huinf(−F (x)).
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By assumption (iv) and (vi) of Proposition 2.4, we obtain F ∗
k0,l&u(x

∗) ≤l
C

t̂k0 ≤u
C F ∗

k0,l&u(x
∗). Using Proposition 3.1 and (ii) of Lemma 3.4 and 3.5, we

have

(⋆⋆) − huinf(−F ∗
k0,l&u(x

∗)) = hlsup(F
∗
k0,l&u(x

∗)) ≤ t̂ ≤ huinf(F
∗
k0,l&u(x

∗)).

We suppose contrary that there exists z ∈ X such that huinf(F
∗∗
k0,l&u(z)) <

huinf(F (z)). We set

Dom(huinf ◦ F ) := {x ∈ X |huinf(F (x)) <∞},

Epi(huinf ◦ F ) := {(x, t) ∈ X × R |huinf(F (x)) ≤ t}.
Then we have by the assumption and Lemma 3.10, 3.11 that Epi(huinf ◦ F ) is
closed and convex. Moreover, we have

(z, huinf ◦ F ∗∗
k0,l&u(z)) /∈ Epi(huinf ◦ F ).

From classical Hahn-Banach theorem there exists (z∗, α) ∈ X × R such that
(z∗, α) ̸= (0, 0) and

(∗) ⟨z, z∗⟩+ α · huinf ◦ F ∗∗
k0,l&u(z) > sup{⟨x, z∗⟩+ αt |(x, t) ∈ Epi(huinf ◦ F )}.

It is clear that α ≤ 0. By using scalarizing function huinf and following the same
line as Theorem 4.12 in [3], we obtain α < 0.

Dividing (∗) by (−α) and using (⋆) and Lemma 4.9, we have

⟨z, z∗⟩
−α

− huinf ◦ F ∗∗
k0,l&u(z) > sup

{
⟨x, z∗⟩
−α

− t

∣∣∣∣ (x, t) ∈ Epi(huinf ◦ F )
}

= sup

{
⟨x, z∗⟩
−α

− huinf(F (x))

∣∣∣∣ x ∈ Dom(huinf ◦ F )
}

≥ sup

{
⟨x, z∗⟩
−α

+ huinf(−F (x))
∣∣∣∣ x ∈ Dom(huinf ◦ F )

}
= huinf ◦ F ∗

k0,l&u

(
z∗

−α

)
On the other hand, by the definition of F ∗∗

k0,l&u, (⋆⋆) and (ii), (iii) of Lemma 3.4,
we have〈

z,
z∗

−α

〉
− huinf ◦ F ∗

k0,l&u

(
z∗

−α

)
≤

〈
z,
z∗

−α

〉
+ huinf

(
− F ∗

k0,l&u

(
z∗

−α

))
≤ huinf ◦ F ∗∗

k0,l&u

(
z∗

−α

)
,

which is a contradiction. Therefore, we have huinf(F
∗∗
k0,l&u) = huinf(F ). □
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Remark 1. In [3], we have found that by (iii) of Proposition 3.1 it is difficult
to obtain F ∗∗

k0,ul-type duality theorem in this manner. Moreover, we have to

assume some conditions on F and F ∗
k0,u to obtain ll-type (Theorem 4.13 in [3])

and uu-type (Theorem 4.14 in [3]) strong duality theorems.

• F satisfies the condition F (x)− F (x) ⊂ C for all x ∈ X. [ll-type]
• F ∗

k0,u(x
∗) satisfies the condition F ∗

k0,u(x
∗) − F ∗

k0,u(x
∗) ⊂ −C for all

x∗ ∈ X∗. [uu-type]

4.4. Subdifferentials for set-valued map.

Definition 4.13. Let F : X → V be a set-valued map. Then the subdifferential
of F , ∂lF (x), ∂uF (x), are defined by the following set:

∂lF (x) := {T ∈ L(X,Y ) | Tv − Tx+ F (x) ≤l
C F (v) ∀v ∈ X},

∂uF (x) := {T ∈ L(X,Y ) | Tv − Tx+ F (x) ≤u
C F (v) ∀v ∈ X}.

Proposition 4.14. Let F : X → V be a set-valued map and z ∈ X. Then we
have the following relationship:

(a) 0Y ∈ ∂lF (z) =⇒ F (z) ∈ l-Min

( ⋃
x∈X

[F (x)], C

)
,

(b) 0Y ∈ ∂uF (z) =⇒ F (z) ∈ u-Min

( ⋃
x∈X

[F (x)], C

)
.

Proof. By the definition of ∂lF (z), we have that

0Y ∈ ∂lF (z) ⇐⇒ 0x− 0z + F (z) ≤l
C F (x) (∀x ∈ X)

⇐⇒ F (z) ≤l
C F (x) (∀x ∈ X) =⇒ F (z) ∈ l −Min

( ⋃
x∈X

[F (x)], C

)
and hence conclusion (a) holds. In a similar way, we obtain conclusion (b). □
Theorem 4.15. Let F : X → V be a set-valued map and z ∈ X. Then the
following statement is true:

T ∈ ∂lF (z) =⇒ F (z) + F ∗
l (T ) ≤l

C Tz.

Proof. By the definition of ∂lF (z), we have that

T ∈ ∂lF (z) ⇐⇒ Tx− Tz + F (z) ≤l
C F (x) (∀x ∈ X)

⇐⇒ F (x) ⊂ Tx− Tz + F (z) + C (∀x ∈ X)

⇐⇒ Tz + F (x) ⊂ Tx+ F (z) + C (∀x ∈ X)

=⇒ Tz ∈ Tz + F (x)− F (x) ⊂ Tx− F (x) + F (z) + C (∀x ∈ X)

⇐⇒ F (z) + Tx− F (x) ≤l
C Tz (∀x ∈ X).

By the definition of F ∗
l (T ), we obtain F (z) + F ∗

l (T ) ≤l
C Tz. □
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Theorem 4.16. Let F : X → V be a set-valued map and z ∈ X. Then the
following statement is true:

F (z) + F ∗
u (T ) ≤u

C Tz =⇒ T ∈ ∂uF (z).

Proof. Let F (z) + F ∗
u (T ) ≤u

C Tz. By the definition of F ∗
u (T ), we have

⇐⇒ F (z) + Tx− F (x) ≤u
C Tz (∀x ∈ X)

⇐⇒ F (z) + Tx− F (x) ⊂ Tz − C (∀x ∈ X)

⇐⇒ Tx− Tz + F (z)− F (x) ⊂ −C (∀x ∈ X)

=⇒ Tx− Tz + F (z) ⊂ Tx− Tz + F (z) + F (x)− F (x) ⊂ F (x)−C (∀x ∈ X)

⇐⇒ Tx− Tz + F (z) ≤u
C F (x) (∀x ∈ X),

that is, T ∈ ∂uF (z). □

5. Conclusions

In this paper, first we gave new definitions of conjugate of set-valued map in
the framework of set optimization problem. Then we presented weak duality
theorems with respect to the set relations ≤l&u

C . Moreover, we presented strong
duality theorems which depend on the direction k0 ∈ intC and nonlinear scalar-
ization technique. We also gave some continuity properties of conjugate relation
for set-valued map. Then we have found that the concept of C-closedness plays
an important role to derive some kind of continuity properties of set-valued map
F in set optimization problem. Lastly, we gave new definitions of subdiffer-
entials for set-valued map and investigate its properties. We also gave some
relationships between the subdifferentials for set-valued map and the Fenchel’s
type inequalities for set-valued map.

By Proposition 4.14, the author think that Definition 4.13 is one of the nat-
ural extensions of subdifferential for (extended) real-valued function. There are
some previous researches for the differentials for set-valued map (for instance,
[6, 15, 20]), however, the investigation of subdifferential for set-valued map has
only just begun. The investigation of relationships between the differentials for
set-valued map and the subdifferentials for set-valued map will be one of the
most important subject of set optimization problem.

References

[1] Y. Araya, Four types of nonlinear scalarizations and some applications in set optimiza-
tion, Nonlinear Anal. 75 (2012), 3821–3835.

[2] Y. Araya, New types of nonlinear scalarizations in set optimization, Nonlinear Analysis

and Optimization, S. Akashi, W. Takahashi and T. Tanaka (eds.), Yokohama Publishers,
Yokohama, 2014, pp. 7–21.

[3] Y. Araya, Conjugate duality in set optimization via nonlinear scalarization , submitted.



ON SOME PROPERTIES OF CONJUGATE RELATION AND SUBDIFFERENTIALS 17

[4] Y. Araya, K. Suzuki, Y. Saito and Y. Kimura, New sufficiency for global optimality and
duality of multi-objective programming problems via underestimators, submitted.

[5] R. I. Bot, S-M. Grad and G. Wanka, Duality in Vector Optimization, Vector Optimiza-

tion, Springer-Verlag, Berlin, 2009.
[6] D. Kuroiwa, On derivatives and convexity of set-valued maps and optimality conditions

in set optimization, J. Nonlinear Convex Anal 10 (2009), 41–50.
[7] P. G. Georgiev and T. Tanaka, Vector-valued set-valued variants of Ky Fan’s inequality,

J. Nonlinear Convex Anal. 1 (2000), 245–254.
[8] P. G. Georgiev and T. Tanaka, Fan’s inequality for set-valued maps, Proceedings of the

Third World Congress of Nonlinear Analysts, Part 1 (Catania, 2000), Nonlinear Anal.
47 (2001), 607–618.

[9] C. Gerstewitz Nichtkonvexe Dualität in der Vektoroptimierung. (German) [Nonconvex
duality in vector optimization], Wiss. Z. Tech. Hochsch. Leuna-Merseburg, 25 (1983),

357–364.
[10] C. Gerstewitz and E. Iwanow, Dualität für nichtkonvexe Vektoroptimierungsprobleme.

(German) [Duality for nonconvex vector optimization problems], Workshop on vector

optimization (Plaue, 1984) Wiss. Z. Tech. Hochsch. Ilmenau 31 (1985), 61–81.

[11] C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in
vector optimization, J. Optim. Theory Appl. 67 (1990), 297–320.
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order relations on family of sets and scalarizations for set optimization, Positivity 22
(2018), 783–802.

[24] H. Kawasaki, Conjugate relations and weak subdifferentials of relations , Math. Oper.
Res. 6 (1981), 593–607.

[25] H. Kawasaki, A duality theorem in multiobjective nonlinear programming, Math. Oper.

Res. 7 (1982), 95–110.



18 YOUSUKE ARAYA
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Lemma 5.1. For C ⊂ Y a closed convex cone and A,B, V ∈ V, the following
statements hold:

(i) C + C = C;
(ii) C + intC = intC;
(iii) clA+ clB ⊂ cl(A+B);
(iv) cl(V + C) + C = cl(V + C).

Appendix A: Proof of Lemma 3.3

Proof. We define

Λl
−(V ) := {t ∈ R

∣∣tk0 ∈ int(V + C)},

Λl(V ) := {t ∈ R
∣∣tk0 ∈ V + C },

Λl
+(V ) := {t ∈ R

∣∣tk0 ∈ cl(V + C)}.
Then we have obviously that Λl

−(V ) ⊂ Λl(V ) ⊂ Λl
+(V ) and hence

inf Λl
+(V ) ≤ inf Λl(V )(= hlinf(V )) ≤ inf Λl

−(V ).

(i) We assume hlinf(V ) ≤ t and let t ∈ R be fixed. Then by the definitions of

hlinf and Λl being of epigraphical type (that is, t ∈ Λl and t̂ > t implies t̂ ∈ Λl,
see [1]), we have (

t+
1

n

)
k0 ∈ V + C

for all n ∈ N. Taking the limit when n→ ∞, we obtain tk0 ∈ cl(V + C).
Conversely, by the definitions of hlinf , we show

inf Λl
+(V ) = inf Λl(V ) = inf Λl

−(V ).

We assume contrary that inf Λl
+(V ) < inf Λl

−(V ). Then there exists t1, t2 ∈ R
such that inf Λl

+(V ) < t1 < t2 < inf Λl
−(V ). By inf Λl

+(V ) < t1 [t1k
0 ∈

cl(V + C)] and using (iv) of Lemma 5.1, we have

(∗) t1k
0 + C ⊂ cl(V + C) + C = cl(V + C).

On the other hand, we have

(∗∗) t2k
0 ∈ t2k

0 +C = t1k
0 +C + (t2 − t1)k

0 ⊂ t1k
0 + intC = int(t1k

0 +C).

By (∗), we have the following inclusion

(∗ ∗ ∗) int(t1k
0 + C) ⊂ int(cl(V + C)) = int(V + C).

By (∗∗) and (∗ ∗ ∗), we obtain t2k
0 ∈ int(V + C), which contradicts t2 <

inf Λl
−(V ).
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(ii) Let V1, V2 ∈ V be such that V1 ≤l
C V2 (V2 ⊂ V1 + C). Then we have

V2 + C ⊂ V1 + C + C = V1 + C.

If hlinf(V2) = ∞, we have that condition (ii) clearly holds. Taking hlinf(V2) ∈ R,
we obtain

hlinf(V2)k
0 ⊂ cl(V2 + C) ⊂ cl(V1 + C).

Using (i) of Lemma 3.3, we have hlinf(V1) ≤ hlinf(V2).
(iii) see [31]. (iv) is from the definition of equivalence class and the mono-

tonicity of hlinf .
(v) We prove sub-additivity. For any V1, V2 ∈ V by the definition of hlinf we

have

hlinf(V1)k
0 ⊂ cl(V1 + C) and hlinf(V2)k

0 ⊂ cl(V2 + C).

If hlinf(V1) = ∞ or hlinf(V2) = ∞, we have that condition (v) clearly holds. By
adding the above inclusions and using (iii) of Lemma 5.1, we obtain

{hlinf(V1) + hlinf(V2)}k0 ⊂ cl(V1 + C) + cl(V2 + C) ⊂ cl(V1 + V2 + C).

Using (i) of Lemma 3.3, we obtain the sub-additivity of hlinf . The positively
homogeneity of hlinf is easy.

(vi) Firstly, we show

V ∈ V : C−proper ⇐⇒ hlinf(V ) > −∞

If V + C = Y for V ∈ V , then we have tk0 ⊂ V + C for all t ∈ R, which is
equivalent to hlinf(V ) = −∞. Conversely, let tk0 ⊂ V + C for all t ∈ R. Then
we have

tk0 + C ⊂ V + C + C = V + C.

For k0 ∈ intC, it is known that⋃
t∈R

(tk0 + C) = Y

and hence V + C = Y .
Moreover, there exist s ∈ R such that sk0 ∈ V +C, that is, hlinf(V ) < s <∞.

Indeed, suppose that for all t ∈ R such that tk0 ∈ V + C. Taking t = −n, we
have −nk0 ∈ y + C for all y ∈ V and n ∈ N. Hence, we have

−k0 ∈ y

n
+ C.

Taking the limit when n→ ∞, we obtain k0 ∈ −C, which is a contradiction.
(vii) Let hlinf(V ) < t. Then there exists t̂ ∈ R such that hlinf(V ) ≤ t̂ < t. By

using (i), we have

tk0 = t̂k0 + (t− t̂)k0 ⊂ V + C + (t− t̂)k0 ⊂ V + intC.
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Conversely, let tk0 ∈ V + intC. For k0 ∈ intC, it is known that

intC =
⋃
ε>0

(εk0 + intC).

Therefore, we have

tk0 ∈ V + intC =
⋃
ε>0

(V + εk0 + intC + C)

and {V +εk0+intC+C}ε>0 is an open cover of {tk0}. Since {tk0} is compact,
we can find ε1, ε2, · · · , εm > 0 such that

tk0 ∈
m⋃
i=1

(V + εik
0 + intC + C) = V + ε0k

0 + intC ⊂ V + ε0k
0 + C,

where ε0 := min{εi|i = 1, 2 · · ·m} > 0. Then we have (t − ε0)k
0 ∈ cl(V + C)

and therefore hlinf(V ) ≤ t− ε0 < t.
(viii) In a similar way as (ii) by using (vii) instead of (i), remarking intC +

C = intC, we obtain the conclusion. □

Appendix B: Proof of Lemma 3.4

Proof. (i) We define

Λu(V ) := {t ∈ R
∣∣V ⊂ tk0 − C }.

We assume huinf(V ) ≤ t and let t ∈ R be fixed. Then by the definitions of huinf
and Λu being of epigraphical type, we have

v −
(
t+

1

n

)
k0 ∈ −C

for all v ∈ V and n ∈ N. Taking the limit when n→ ∞, we obtain

v − tk0 ∈ −clC = −C

for all v ∈ V , that is, V ⊂ tk0 −C. The converse is clear from the definition of
huinf .

(ii) Let V1, V2 ∈ V be such that V1 ≤u
C V2 (V1 ⊂ V2 − C). If huinf(V2) = ∞,

we have that condition (ii) clearly holds. Taking huinf(V2) ∈ R, we obtain

V2 ⊂ huinf(V2)k
0 − C

and hence

V2 − C ⊂ huinf(V2)k
0 − C − C = huinf(V2)k

0 − C.
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Using the inclusion V1 ⊂ V2 − C, we have

V1 ⊂ V2 − C ⊂ huinf(V2)k
0 − C

that is, huinf(V1) ≤ huinf(V2).
(iii) see [31]. (iv) and (v) are similar as Lemma 3.3.
(vi) Let huinf(V ) < t. Then there exists t̂ ∈ R such that huinf(V ) ≤ t̂ < t. By

using (i), we have

V ⊂ t̂k0 − C = tk0 − (t− t̂)k0 − C ⊂ tk0 − intC.

(vii) Firstly, we show huinf(V ) > −∞ for V ∈ V . Indeed, let V ⊂ tk0 − C
for all t ∈ R. Taking t = −n, we have y ∈ −nk0 − C for all y ∈ V and n ∈ N.
Hence, we have

y

n
+ k0 ∈ −C.

Taking the limit when n→ ∞, we obtain k0 ∈ −C, which is a contradiction.
Since V ∈ V is (−C)-bounded and k0 ∈ intC, for the neighborhood of zero

U = k0 − intC

there exists s > 0 such that V ⊂ s(k0 − intC)− C and hence

V ⊂ sk0 − (intC + C) ⊂ sk0 − C.

that is, huinf(V ) ≤ s <∞.
(viii) Let V ⊂ tk0 − intC. For k0 ∈ intC, it is known that

intC =
⋃
ε>0

(
(εk0 + intC) + C

)
.

Therefore, we have

V ⊂ tk0 − intC = tk0 −
⋃
ε>0

(εk0 + intC + C) =
⋃
ε>0

(
{(t− ε)k0 − intC} − C

)
and {(t − ε)k0 − intC − C}ε>0 is an open cover of V . Since V ∈ V is (−C)-
compact, we can find ε1, ε2, · · · , εm > 0 such that

V ⊂
m⋃
i=1

(
(t− εi)k

0 − intC − C
)
= (t− ε0)k

0 − intC ⊂ (t− ε0)k
0 − C

where ε0 := min{εi|i = 1, 2 · · ·m} > 0. Then we have V ⊂ (t− ε0)k
0 − C and

therefore huinf(V ) ≤ t− ε0 < t.
(ix) In a similar way as (ii) by using (vi) and (viii) instead of (i), remarking

intC + C = intC, we obtain the conclusion. □
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